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2025 where random assignment was not possible. To reduce potential selection bias,
both classes were matched based on prior science achievement and taught by
the same teacher using comparable learning materials. A total of 62 seventh-
grade students participated, with 31 in the experimental group and 31 in the
control group. In the experimental class, scaffolding was implemented through
step-by-step guidance, worked examples, prompts, and gradually reduced
support as students progressed through deep learning activities such as
exploring problems, connecting concepts, and reflecting on their thinking. Data
were collected using an Extraneous Cognitive Load Questionnaire adapted
from Paas, van Merriénboer, and Sweller (2021) and analyzed with an
Independent Samples t-test. The findings revealed a significant difference
between the two groups, t(60) = 9.03, p < .001, with the experimental class (M
= 2.52) reporting a substantially lower cognitive load than the control class (M
= 4.41). The 1.89-point decrease reflects a meaningful practical improvement,
showing that students experienced less unnecessary mental effort while
engaging with complex material. Overall, the study shows that combining
scaffolding with deep learning strategies not only strengthens students’
understanding but also makes the learning process mentally more manageable,
leading to a more effective and engaging science learning experience.
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INTRODUCTION

The transformation of education in Indonesia through the Merdeka Curriculum positions
the deep learning approach as one of the central orientations of classroom instruction. This
approach emphasizes students’ active involvement in constructing meaning, connecting
concepts to real life contexts, and engaging in reflective thinking to develop enduring and
transferable understanding (Ministry of Education and Culture, 2023). Historically, the concept
of deep learning traces back to Mystakidis, (2023), who distinguished between deep and
surface approaches to learning, and it has since evolved into a pedagogical framework that
promotes critical reasoning and meaningful knowledge integration (Mystakidis, 2023).
However, the implementation of deep learning within the Merdeka Curriculum is not without
challenges. Variations in teacher readiness, limited alignment between deep learning principles
and existing assessment practices, and the potential increase in students’ cognitive load often
hinder its optimal realization in the classroom. These issues highlight the need for empirical
studies that explore instructional strategies capable of supporting deep learning while reducing
unnecessary mental demands on students.

However, the implementation of science learning in schools often does not achieve the
characteristics of deep learning due to the high cognitive load experienced by students. The
complexity of instructional content, unstructured presentation of information, and inefficient
multimedia use may generate extraneous cognitive load cognitive effort that does not
contribute to knowledge construction (Chen, Kalyuga, & Sweller, 2023). This condition
hinders students’ ability to integrate concepts, leading learning to become short-term
memorization rather than conceptual understanding.

A number of studies have shown that scaffolding techniques can serve as effective
strategies for managing cognitive load in complex learning environments. Hulsmann et al.
(2024) found that scaffolding in science learning reduces extraneous load and improves
information processing efficiency. Bransen et al.,, (2024) reported that gradually faded
scaffolding supports the optimization of working memory capacity and enhances students’
independent thinking skills. Nevertheless, the majority of such studies have been conducted at
the senior high school or tertiary level, while research at the junior secondary level remains
limited. Moreover, studies on deep learning at the junior secondary level have generally not
explicitly integrated Cognitive Load Theory (CLT) into their instructional design.

This gap highlights the need for a science learning model that integrates the deep learning
approach with CLT based scaffolding, enabling students to process complex information in a
gradual, structured, and meaningful manner. Such integration has the potential to reduce
extraneous load while simultaneously increasing germane load, namely the cognitive resources
allocated to conceptual schema formation.

Based on this urgency, the present study aims to examine the influence of CLT based
scaffolding techniques within a deep learning instructional approach on students’ extraneous
cognitive load in science learning at the junior secondary level.

RESEARCH METHOD
Research Design

This study employed a quasi-experimental Posttest Only Nonequivalent Control Group
Design, selected because the participating classes had been formed prior to the research,
making random assignment impractical. To reduce potential threats to internal validity arising
from pre existing group differences, both classes were matched based on prior science
achievement records, demographic characteristics, and teacher assignment. Additionally, a
preliminary equivalence check was conducted using students’ previous semester scores to
ensure that the two groups were comparable before the intervention. The experimental group
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received deep learning instruction supported by structured scaffolding, while the control group
experienced the same deep learning sequence without scaffolding. Data were collected through
two validated instruments: an Extraneous Cognitive Load Questionnaire adapted from Chen,
Kalyuga, & Sweller, (2023) and a Conceptual Understanding Test developed according to the
curriculum’s learning objectives. This design allowed the researchers to examine the extent to
which scaffolding enhanced deep learning influenced students’ extraneous cognitive load and
conceptual understanding with strengthened methodological rigor. (Chen, Kalyuga, & Sweller,
2023).

The design adapted the experimental framework used by Hilsmann et al. (2024), who
investigated the influence of scaffolding techniques on cognitive load in biology learning. In
their study, two groups (with and without researcher provided instructional tips) engaged in a
multi step experimental activity on animal adaptation to cold temperatures. After each phase, a
cognitive load questionnaire was administered to monitor changes in cognitive load during the
learning process.

Although Hulsmann et al. (2024) implemented a multi session design with repeated
measurements, the present study adjusted the approach into a posttest-only format to fit the
instructional context of junior secondary education. This adjustment allowed data collection to
focus on final cognitive load outcomes after the completion of the deep learning sequence,
rather than repeated measures across instructional cycles. Thus, the design maintains the core
purpose of evaluating the instructional intervention’s influence on extraneous cognitive load
while applying a format that is efficient and contextually appropriate for Indonesian
classrooms. Table 1 below illustrates the research design used in this study.

Table 1. Research Design

Group Treatment Posttest
Xl = Ol
X2 X 02
Description:
Xi : Control class (deep learning without scaffolding)
Xa : Experimental class (deep learning with scaffolding)
0,0, : Posttest scores on the Extraneous Cognitive Load Questionnaire

Research Target/Subject

The population in this study consisted of 190 seventh-grade students at a junior
secondary school implementing the Merdeka Curriculum. From this population, 62 students
were selected using convenience sampling based on recommendations from the subject teacher,
with consideration of academic consistency, learning participation, and representation of
student ability levels. The sample was then divided into two groups: an experimental class that
received deep learning instruction with scaffolding support and a control class that received
deep learning instruction without scaffolding.

Research Procedure

The research procedure was carried out in two main phases. First, the experimental class
was taught using a deep learning approach integrated with scaffolding, where support was
provided gradually through scaffolded questioning, worked examples, and reflective feedback
to assist students in developing a deeper understanding of science concepts (Zuo, 2023; Van
Nooijen et al., 2024; Hulsmann et al., 2024). Meanwhile, the control class followed similar
deep learning activities but without the scaffolding component. Second, after the completion of
the instructional sequence, both groups were administered the Extraneous Cognitive Load
Questionnaire to measure perceived external cognitive load.

Page | 305



Journal International Inspire Education Technology

Instruments, and Data Collection Techniques

The instrument was adapted from Chen, Kalyuga, & Sweller, (2023) and employed a 9-
point Likert scale ranging from 1 (very low load) to 9 (very high load), which has been widely
validated for measuring subjective cognitive load. Chen, Kalyuga, & Sweller, (2023)

Data Analysis Technique

Data analysis was conducted using an Independent Samples t-test to determine whether
there were statistically significant differences in extraneous cognitive load between the
experimental and control groups. This test was chosen because it is appropriate for comparing
two independent groups with interval scale data that meet the assumption of normal
distribution.

RESULTS AND DISCUSSION

The learning instruments developed in this study applied the principles of Cognitive Load
Theory (CLT) within a deep learning instructional approach, utilizing scaffolding techniques to
support the gradual construction of concepts and reduce students’ extraneous cognitive load.
Chen, Kalyuga, & Sweller, (2023); Skulmowski & Xu, (2023). The instruments were designed
to provide cognitive support that corresponds to the level of task difficulty, enabling students to
focus on understanding core concepts without being burdened by irrelevant information.

Figures 1 portray how the principles of Cognitive Load Theory (CLT) were brought to
life through a carefully structured series of scaffolding strategies embedded across different
stages of the science lesson. At the start, students used concept diagrams to map out key ideas,
helping them sort information and lessen the inherent complexity of the topic (Yen & Tu,
2023). During instruction, visual cues such as highlighted links, color distinctions, and simple
step indicators were added to help students focus on what mattered most and avoid unnecessary
cognitive effort. Van Nooijen et al., (2024) As the learning activities became more complex,
guiding questions were introduced to nudge students toward deeper analysis and to encourage
productive cognitive engagement. Webb & Blanchard, (2024). Over time, this support was
gradually reduced: visual hints were removed, prompts became more open ended, and students
were encouraged to take more control of their thinking as they became ready.

To understand how well these scaffolding strategies worked, students completed an
Extraneous Cognitive Load Questionnaire and a Conceptual Understanding Test aligned with
the learning objectives. The results showed a clear pattern: students who learned with
scaffolding consistently reported lower extraneous cognitive load and demonstrated stronger
conceptual understanding. Zuo, (2023) More importantly, the benefits were visible in their
learning behavior. Students in the scaffolded class showed more organized reasoning during
problem-solving, were better able to explain their thinking, and retained essential concepts
more accurately during follow up tasks. Singh & Fong, (2024) Taken together, these findings
show that thoughtfully designed CLT based scaffolding does more than reduce cognitive strain
it creates a learning environment where students can process information more efficiently and
build deeper, longer lasting understanding. Here's the flow:
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Figure 1. Deep Learning Learning Materials Designed with CLT Principles

The results of the analysis showed that the implementation of deep learning supported by
scaffolding significantly reduced extraneous cognitive load. The experimental class (E), which
received scaffolding, reported lower cognitive load (M = 2.52; SD = 0.64) compared to the
control class (C) without scaffolding (M = 4.41; SD = 0.98), as shown in Figure 2.

4,41

Control Class Experimental
Class

Average Score
O =Bk N W &~ U

Figure 2. Comparison of mean cognitive load scores between Control Class and
Experimental Class

a. Reduction of Extraneous Load

An independent samples t-test was conducted using SPSS 25 to determine the
significance of differences in students’ cognitive load after participating in deep learning
instruction with and without scaffolding.
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Table 2. T-test results to find out the average difference between the
experimental class and the control class

Levene’s Test t-test for Equality of Means 95%
for Equality of Confidence
Variances Interval of the
Difference
F Sig t df Sig.(2 Mean Std. Error Lower  Upper
- . Differenc
tailed) Differenc

Equal 248 12 9.02 60 .000 1.89539 .20998 1.4753 2.3154
variance 5 0 7 7 1
S

Assume
d

Equal 9.02 51.4 .000 1.89539 .20998 1.4739 2.3168
variance 7 14 3 6

s not

assumed

The findings demonstrate that the deep learning approach supported by scaffolding was
significantly effective in reducing students’ extraneous cognitive load during science learning.
The independent samples t-test confirmed a substantial difference between the control group
(without scaffolding) and the experimental group (with scaffolding), where the experimental
group showed a considerably lower mean cognitive load (M = 2.25, SD = 0.64) compared to
the control group (M =4.41, SD =0.98), with t(60) = 9.03, p <.001.

These results highlight the role of scaffolding as a mechanism for regulating the flow of
information into working memory. Gradual, structured support enables students to manage
complex information more efficiently (van Nooijen et al., 2024). Scaffolding allows students to
focus on essential learning elements without being overwhelmed by irrelevant details one of
the primary sources of extraneous load as described in CLT. Chen, Kalyuga, & Sweller,
(2023). The instructional design used in this study, including concept diagrams, guiding
questions, and mnemonic visuals (Figure 1), reflects the direct application of CLT principles in
deep learning. These tools help minimize unproductive cognitive effort and promote
meaningful schema construction. Bransen et al., (2024).

b. Cognitive Load Theory (CLT)

The findings reinforce core principles of CLT (Chen, Kalyuga, & Sweller, 2023;
Hoogerheide, Paas, & van Merriénboer, (2024), which emphasize that effective learning
depends on efficient use of working memory resources. Cognitive load is composed of intrinsic
load, extraneous load, and germane load. Scaffolding reduces extraneous load by reorganizing
information and directing students’ attention to relevant aspects. Skulmowski & Xu, (2023).
Reducing extraneous load enables working memory to allocate resources to higher-order
thinking and conceptual understanding (Bransen et al., 2024). This aligns with research
suggesting that scaffolding provides strategic support that is then gradually faded as student
independence increases (Appiah-Twumasi, 2024; Zuo, 2023). Similar findings by Hulsmann et
al. (2024) demonstrate that CLT based scaffolding avoids split-attention and integrates verbal
and visual information more effectively.
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c. Zone of Proximal Development (ZPD)

The use of scaffolding in this study aligns with Vygotsky’s (1978) Zone of Proximal
Development, which refers to the difference between what students can achieve independently
and what they can accomplish with guidance from a more knowledgeable other. As explained
by Wood, Bruner, and Ross (1976), scaffolding functions as temporary support that is
gradually withdrawn as students’ competence increases. In this study, scaffolding was provided
through guiding questions, metacognitive reflection prompts, and step-by-step worked
examples. These supports enabled students to focus on essential concepts and avoid confusion,
thereby reducing extraneous cognitive load and increasing germane cognitive load. Chen,
Kalyuga, & Sweller, 2023; Hoogerheide, Paas, & van Merriénboer, (2024). The findings
indicate that scaffolded deep learning not only enhances conceptual understanding but also
fosters gradual development of cognitive independence.

d. Deep Learning Approach

The results show that students who participated in scaffolded deep learning experienced
lower cognitive load than those in conventional learning conditions. This supports the view that
deep learning involves interpreting, analyzing, and reflecting on concepts rather than
memorizing information. Mystakidis, (2023). Scaffolding structured students’ cognitive
processes and prevented overwhelming demands on working memory. Gradual reduction of
support (fading) also contributed to independent problem solving abilities, as documented by
Hilsmann (2024) Thus, deep learning combined with scaffolding does not simplify learning,
but makes it more structured and meaningful.

e. Instructional Implications

The findings underscore the need for learning designs that incorporate CLT principles,
particularly in constructing worksheets, handouts, and learning media. Instruction should
integrate text and visuals coherently, avoid split attention effects, and adjust conceptual depth
to students’ prior knowledge. Skulmowski & Xu, (2023). Scaffolding should be applied as
temporary, adjustable support, and gradually faded to promote self-regulated learning and
transfer of knowledge to new contexts. Zuo, (2023). Monitoring cognitive load is essential to
ensure that scaffolding effectively reduces extraneous load and supports germane load
(Bransen et al., 2024). Ultimately, deep learning requires opportunities for independent
reflection and problem solving, ensuring meaningful and transferable understanding.

CONCLUSION

This study concludes that the implementation of a deep learning approach supported by
scaffolding techniques effectively reduces students’ extraneous cognitive load during science
learning. The Independent Samples T-Test revealed a significant difference between the control
class (M = 4.41, SD = 0.98) and the experimental class (M = 2.52, SD = 0.64), t(60) = 9.03, p <
.001, indicating that students who received structured scaffolding experienced lower non-
essential cognitive demands compared to those who did not. These findings suggest that
gradual and adaptive instructional support enables students to process information more
efficiently by directing attention toward conceptually relevant elements while minimizing
cognitive interference. More over, the integration of deep learning encourages deeper cognitive
engagement, strengthens the relationship between prior and new knowledge, and fosters more
meaningful and enduring conceptual understanding. Overall, this study provides empirical
evidence that the combination of deep learning and scaffolding constitutes an effective
pedagogical strategy for optimizing cognitive resources and enhancing the quality of science
learning.
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