Qualitative and Quantitative Study on Students’ Critical Thinking of Conceptual E-Scaffolding in Blended Learning Context

Agusti Mardikaningsih¹, Praharisti Kurniasari², Anangga Pradipta³

¹Universitas Insan Budi Utomo, Indonesia
E-mail: dhiekadana147@gmail.com
²Universitas Insan Budi Utomo, Indonesia
E-mail: kurniasari@budiutomomalang.com
³Universitas Insan Budi Utomo, Indonesia
E-mail: ananggapradipta@budiutomomalang.com

Corresponding author: dhiekadana147@gmail.com

Abstract — Critical thinking ability is one of the rational thinking capabilities that is highly required by students in solving problems or delivering an idea. In fact, however, students’ critical thinking skill is still categorized as low according to the previous studies. One feasible alternative to be done in developing students’ critical thinking ability is implementing electronic-based scaffolding. For that reason, there should be research to examine conceptual e-scaffolding in blended learning on Problem-Based Learning (PBL) model to observe the first semester students’ critical thinking ability at IKIP Budi Utomo Malang. This study employed mixed-methods with explanatory research design. The experimental group was given conceptual e-scaffolding treatment in blended learning on Problem-Based Learning model and the control group did not receive any additional treatment. For both experimental and control groups, the research subject was the students in the first semester at IKIP Budi Utomo Malang. As there were two research groups, 46 students belonged to the control group. The instruments utilized in this research were pre-test and post-test. The pre-test consisted of 18 multiple choice items with reliability coefficient of 0.735 and critical thinking post-test consisted of 14 essay question items with reliability coefficient of 0.762. In addition, semi-structured interview and think aloud guidelines were used. Quantitative data were obtained from the distribution of pre-test and post-test items. Meanwhile, qualitative data were retrieved from semi-structured interview and think aloud. The quantitative data were then analyzed using ANACOVA parametric analysis while the qualitative data were analyzed using path analysis model. The research findings indicated that: 1) the critical thinking ability of students who studied with conceptual e-scaffolding in blended learning on Problem-Based Learning was higher than those who studied with conventional method, 2) the implementation of conceptual e-scaffolding in the form of link map in Problem-Based Learning model influenced positively towards students’ critical thinking ability. This was reflected from the behavior and the way of thinking of students belonged to the experimental group indicating critical thinking ability development during the learning process. Furthermore, conceptual e-scaffolding in the form of link map helped the students to obtain information easily and utilized it in understanding concepts in geometrical optic material.

Keywords — critical thinking, e-scaffolding, blended learning


Published by: Sekolah Tinggi Agama Islam Al-Hikmah Pariangan Batusangkar
I. INTRODUCTION

Critical thinking ability is one of the rational thinking capabilities that is highly required by students in solving problems or delivering an idea. Critical thinking ability is one of the capabilities that must be acquired by students. One of the 21st century skills which can be developed by using student-centered approach is critical thinking (SiRiPongdee et al., 2020). Critical thinking ability also contributes to an individual’s success and professionalism. One research findings conducted by

(Wulandari et al., 2019) found that the ICT-assisted PBL model was able to improve critical thinking skills with moderate qualifications (Ngain = 0.69) with achievements in the ability to describe problems, provide arguments, carry out induction, carry out deductions, carry out evaluations and dimensions and implementation with moderate qualifications.

In general, critical thinking refers to an individual's ability to question information coming from external or internal sources (Aguilar-Rodríguez et al., 2019). The ability to ask questions is what gives rise to doubt. Doubt can be considered as "a special state of awareness and self-awareness, when the subject experiences or shows distrust towards a certain statement, hesitates to accept it (recognition), because he considers the statement not convincing enough, needs to be justified, valid or well-founded (Zinkevych, 2021). This means that critical thinking must include reflective abilities, namely wrapping the subject matter around yourself. In this sense, critical thinking can be interpreted as an opinion about thinking about thinking, and is characterized by skills and a tendency towards reflective skepticism (Nieto et al., 2010). A person is able to reflect as long as an active disciplined intellectual process is carried out, which includes collecting information received or produced through observation, experience, consideration or communication with other people, the ability to analyze, synthesize and evaluate it. These operations are characterized by consistency, relevance, search for evidence and good reasons, depth and breadth of the problem.

Therefore, critical thinking is reflective thinking with definite judgments and making the right decisions. Doubts arise because there is no strong basis for taking a firm stance. In this situation, individuals begin to look for various alternative options to obtain convincing arguments (Kuru Gönen, 2019; Olive et al., 2019). Another assumption is that a person's field of study will become wider, obtaining additional information and opening up various possible answers to various basic principles and interpretations.

Direct observation activity can increase students’ critical thinking ability as long as it is equipped with particular aid, namely giving scaffolding. The effective scaffolding implementation can help students in studying. Scaffolding implementation influences on the increase of problem-solving capability, scaffolding also enhance high level thinking on the increase of problem-solving capability, scaffolding also enhance high level thinking skill and the integration of knowledge (Aktepe & Ulu, 2023).

Basically, the implementation of scaffolding is only done individually. Scaffolding can facilitate the students in learning process with conceptual, procedural, strategic, and metacognitive assistances (Gren, 2020; Wood, 2021). In the learning process, however, teachers cannot give direct feedback to the entire students at the same time. Therefore, a learning strategy which can overcome the problem is required. One of the alternatives is the collaboration of online learning and face-to-face learning by using scaffolding which is designed into a website. Computer-based scaffolding can contribute to the students’ success in solving problems (Fan et al., 2021; Marrhich et al., 2020)

The implementation of e-scaffolding in the form of website in teaching and learning process is expected to be able to ease teachers’ burden in giving assistance to each student in the teaching and learning context.

One of the models collaborating face-to-face learning and online learning is blended learning. The effective combination from various delivery mode, teaching model, and learning style, and is based on the transparent communication among the involved parties is the definition of blended learning (Delle Monache et al., 2019). The research conducted by (Alwan, 2017) show that the blended learning model using Edmodo can increase student learning outcomes from 55.29 to 88.65, one of which is sending and student responses generally respond positively.

Teaching basic skills is a course requiring the students to think critically. Problem solving, time management, effective communication, and learning environment understanding are required to
achieve learning objectives in this course. According to the statement, conceptual e-scaffolding needs to be given to develop students’ critical thinking ability (Chung et al., 2019; Erbil, 2020). By referring to the background, the researchers conducted a study entitled “Qualitative and quantitative study on students’ critical thinking of e-scaffolding in blended learning context”.

II. RESEARCH METHODS

This research is a mixed-method study with explanatory research design. The research subjects were first semester students at IKIP Budi Utomo Malang. There were two research groups which were acquired using cluster random sampling technique (Nieto et al., 2010; Zinkevych, 2021). The experimental group was given conceptual scaffolding treatment in blended learning on Problem-Based Learning model and the control group was not given any additional treatment. Meanwhile, the qualitative research subjects were selected using purposive sampling technique based on the gap between the scores of pre-test and post-test which can be shown in the following Figure 1.

![Fig. 1 Mixed Methods Explanatory Design (Cresswell, 2007:73)](image)

Quantitative data were used to find out the differences on students’ critical thinking who were given conceptual e-scaffolding treatment in blended learning of Problem-Based Learning model and those who did not receive any additional treatment as the control group (Kaplan-Rakowski, 2021; Roman et al., 2022). The next step was collecting the qualitative data. The qualitative research design in this research employed case study research approach. This research was employed to discover in-depth explanation of the selected case. The case explained how conceptual e-scaffolding in blended learning on Problem-Based Learning model could enhance students’ critical thinking ability. This research utilized two instruments, namely quantitative instrument and qualitative instrument. Qualitative data were collected through the results of semi-structured interview and think aloud on students in the experimental group influenced by the given intervention. Interview was done to find out the effect of intervention towards students’ critical thinking ability (Alwan, 2017; Wulandari et al., 2019). Think aloud was conducted to observe the students’ thinking in solving problems. The problem given was the items of post-test. Case studies are more suitable for producing and revealing information than testing a situation or making assumptions (Kuru Gonen, 2019).

After the research data were obtained, data analysis was then conducted. In this research, quantitative and qualitative data were analyzed sequentially. In the quantitative data analysis obtained from the result of post-test, statistical test was conducted to observe the differences of students’ critical thinking ability in experimental group and control group indicated from the students’ initial knowledge (Seo et al., 2021; Valeeva & Kalimullin, 2021). Next, qualitative data retrieved from the results of semi-structured interview were analyzed. Qualitative data were used to support the previously obtained quantitative data. There were two data analysis steps in this research, namely, quantitative data analysis and qualitative data analysis.

The difference of the critical thinking outcome for the two groups was tested using covariance analysis (ANACOVA) on the result of post-test examined from the students’ initial knowledge. Analysis was conducted using SPSS v16.0 for windows software. If the two groups were different significantly, it was shown from the sig. < 0.05.

Conclusion formulating is the last step of the qualitative data analysis process (Anatoliivna, 2021; Calderón et al., 2021). Conclusion making presents how the critical thinking of each student based on the indicators of critical thinking capability and how the conceptual e-scaffolding influences blended learning in problem-based learning model towards students’ critical thinking ability.

III. RESULT DISCUSSION

The findings of the quantitative research included the description of research data, prerequisite test, parametric analysis, and test on the difference of critical thinking abilities. Pre-test of the research
groups showed that the experimental group obtained higher mean score compared to the control group with the score of 44.62. Meanwhile, the control group obtained the mean score of 37.15. Post-test was conducted after the teaching skills evaluation was done, both in experimental group which implemented conceptual e-scaffolding in blended learning in problem-based learning model and in control group which implemented conventional teaching and learning method. Post-test data were utilized to measure the students’ critical thinking ability related to the learned evaluation materials (Baran & AlZoubi, 2020; Virani et al., 2023). The mean scores of post-test score from the research groups indicated that the score of the experimental group was higher than the control group with the mean score of 39.26. Meanwhile, the control group obtained the mean score of 30.81.

The prerequisite test of parametric analysis in this research included tests of normality, homogeneity, and linearity (Lapitan et al., 2021; Pérez-Pérez et al., 2020). Normality test was utilized to find out whether the obtained data were distributed normally or not (Onah et al., 2021; Zhang et al., 2020). Normality test was conducted towards the pre-test score of the students’ initial knowledge and the post-test score of the students’ critical thinking ability on both experimental group and control group as can be seen from the following table.

It was found that the significance value for pre-test score of the experimental group was 0.058 > 0.05. It indicated that the pre-test score of the experimental group was distributed normally. Meanwhile, the significance value for pre-test score of the control group was 0.090 > 0.05. It indicated that the pre-test score of the control group was distributed normally.

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>3173.795</td>
<td>2</td>
<td>1586.897</td>
<td>2.785</td>
<td>.067</td>
</tr>
<tr>
<td>Intercept</td>
<td>48931.201</td>
<td>1</td>
<td>48931.201</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>97.447</td>
<td>1</td>
<td>97.447</td>
<td>.017</td>
<td>.006</td>
</tr>
<tr>
<td>A</td>
<td>2564.861</td>
<td>1</td>
<td>2564.861</td>
<td>4.501</td>
<td>.037</td>
</tr>
<tr>
<td>Error</td>
<td>50713.814</td>
<td>89</td>
<td>569.818</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>364072.000</td>
<td>92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>53887.609</td>
<td>91</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Levene's Test of Equality of Error Variances

<table>
<thead>
<tr>
<th>F</th>
<th>df1</th>
<th>df2</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.891</td>
<td>1</td>
<td>90</td>
<td>.210</td>
</tr>
</tbody>
</table>

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

CONCLUSION

From the research findings, it can be concluded that the students’ critical thinking ability who were taught using conceptual e-scaffolding in blended learning in problem-based learning model was higher compared to the students who were taught using conventional learning strategy. The mean
score of the students’ critical thinking ability who learned using conceptual e-scaffolding in blended learning in problem-based learning model was higher compared to the students who learned using conventional learning method where this research was conducted. Conceptual e-scaffolding in blended learning in problem-based learning model helped students in learning to discover or build new knowledge and also to remember the previously obtained knowledge by the students. In this research, students who were influenced by the intervention giving were the students with good critical thinking ability, both in behavior and the thinking pattern. During the teaching and learning process, most of the students could be active and motivated in each step of teaching and learning such as the experimental step, individual and group examination, and even the analysis and evaluation of the problem-solving process. The findings indicated that, qualitatively, there was positive impact of the implementation of conceptual e-scaffolding in blended learning in problem-based learning model towards the students’ critical thinking ability.

REFERENCES


