

Local Food Security: Strategies for Sustainable Development in Community Initiatives

Yohanes Kamakaula.¹

¹ Prodi Agribisnis, Faperta, Universitas Papua, Indonesia

ABSTRACT

Local food security has emerged as a critical issue in achieving sustainable development, especially within the context of grassroots community initiatives. This study explores the strategies employed by local communities to ensure food availability, accessibility, and sustainability amidst environmental, economic, and social challenges. Using a qualitative descriptive approach, data were collected through field observations, interviews with local stakeholders, and analysis of community-based food programs. The findings reveal that integrated approaches—such as promoting agroecological farming practices, revitalizing traditional food systems, establishing local food cooperatives, and strengthening policy advocacy—have significantly contributed to enhancing community resilience and reducing dependence on external food supplies. Moreover, community participation, indigenous knowledge, and collaborative networks play a vital role in shaping inclusive and adaptive food security strategies. The study concludes that empowering local actors through participatory and culturally grounded frameworks is essential for advancing sustainable food systems and achieving long-term food sovereignty.

KEYWORDS : Community Initiatives, Local Food Security, Sustainable Development

INTRODUCTION

Food security remains a pressing global concern, especially in the context of growing socio-economic disparities, climate change, and population growth (Greenfeld, 2024; Richardson, 2023). While international frameworks have emphasized the role of national policies and global trade systems in ensuring food availability, the importance of local-level strategies has become increasingly evident (Bromley, 2025; Casanova-Pérez, 2024). Local food security refers to the ability of communities to produce, access, and consume sufficient, safe, and nutritious food to meet their dietary needs and preferences for an active and healthy life. This concept goes beyond mere food supply, encompassing dimensions of sustainability, cultural appropriateness, ecological balance, and social inclusion (Abus, 2022; Galluzzi, 2025). In many rural and urban settings, particularly in developing countries, communities face multifaceted challenges in maintaining consistent access to food. These include limited arable land, inadequate infrastructure, volatile market prices, and policy neglect. Such obstacles

Citation: Kamakaula, Y. (2025). Local Food Security: Strategies for Sustainable Development in Community Initiatives. *Journal Ligundi of Community Service*, 1(6), 289–301.

<https://doi.org/10.17323/ligundi.v1i1.905>

Correspondence:

Yohanes Kamakaula
y.kamakaula@unipa.ac.id

Received: December 12, 2024

Accepted: December 15, 2024

Published: December 31, 2024

underscore the need for localized approaches that leverage community knowledge, environmental resources, and social networks. Rather than waiting for top-down interventions,

many grassroots groups have pioneered innovative strategies to enhance food security through community-driven initiatives. These local responses not only address immediate food needs but also lay the groundwork for sustainable and self-reliant food systems.

The global food system, heavily reliant on industrial agriculture and long supply chains, has proven vulnerable to various shocks such as pandemics, geopolitical instability, and climate-induced disasters. These disruptions have highlighted the fragility of centralized food production and distribution networks. In contrast, localized food systems have demonstrated resilience and adaptability in times of crisis (Herlina, 2024; Hill, 2024; Pessali, 2024). By shortening the distance between food production and consumption, communities can reduce dependency on external sources, minimize carbon footprints, and foster food sovereignty. This transition is crucial for achieving sustainability and mitigating the risks associated with globalized food chains (Blanco, 2023; Ndlovu, 2024; Silalahi, 2023). The concept of food sovereignty, which emphasizes the right of people to define their own food and agriculture systems, aligns closely with local food security. It places control over food systems in the hands of producers and consumers at the local level, challenging the dominance of multinational agribusinesses. Community initiatives grounded in food sovereignty promote agroecological farming, seed saving, traditional culinary practices, and equitable food distribution. These initiatives not only ensure a stable food supply but also preserve cultural heritage and biodiversity, which are often threatened by homogenized, industrialized agriculture.

Moreover, the integration of indigenous knowledge and traditional farming systems has proven effective in enhancing local food resilience. Such systems are adapted to local climates and ecosystems, relying on time-tested practices of crop rotation, intercropping, organic fertilization, and natural pest control. Indigenous practices often involve holistic understandings of the land and seasons, offering sustainable alternatives to input-intensive modern agriculture. Revalorizing these methods through community-based programs can provide models for sustainable agriculture that are economically viable, socially inclusive, and ecologically sound (Augustus, 2023; Hassen, 2022; Sutanto, 2024). Community participation plays a central role in the success of local food security strategies. When local residents are actively involved in the planning, implementation, and monitoring of food programs, the outcomes tend to be more effective and sustainable. Participatory approaches foster a sense of ownership, accountability, and empowerment among community members. These dynamics are crucial in building long-term capacity, enhancing food literacy, and ensuring that interventions are contextually relevant and culturally appropriate. Engagement at the grassroots level also facilitates the identification of local needs, priorities, and potential resources.

In urban contexts, the rise of community gardens, rooftop farms, and local farmers' markets illustrates the growing importance of localized food production. Urban agriculture not only increases access to fresh and affordable produce but also strengthens social ties and creates green spaces in densely populated areas (Vhumbunu, 2022; Wibowo, 2024; Yerima, 2024). These initiatives often emerge from collective action and are supported by local governments, NGOs, and educational institutions. They represent a shift toward more sustainable urban living and contribute to the broader goals of environmental conservation and climate resilience. Access to land and resources remains a critical issue in promoting local food security. Many marginalized communities, including smallholder farmers, women, and indigenous groups, face systemic barriers to land ownership, water access, and agricultural inputs. Addressing these structural inequalities is

essential to empower local actors and enable them to contribute effectively to sustainable food systems. Legal reforms, community land trusts, and resource-sharing arrangements can help democratize access and support more equitable food production and distribution practices.

Policy support at multiple levels—local, regional, and national—is vital for scaling up successful community-based food initiatives. While grassroots innovation is essential, it must be complemented by enabling environments that provide financial, technical, and institutional support (Barłowska, 2025; Ridwana, 2022; Skripko, 2022). Policies that prioritize small-scale farmers, promote agroecological transitions, and incentivize local food procurement can strengthen the foundations of food security. Moreover, integrating food security into broader development agendas such as health, education, and climate adaptation ensures coherence and maximizes impact. Education and capacity-building are also fundamental components of sustainable local food strategies (Deininger, 2023; Kuria, 2025; Vliet, 2022). Empowering individuals with knowledge about nutrition, food production, environmental stewardship, and entrepreneurship fosters resilience and innovation. Schools, extension services, and community centers can serve as hubs for knowledge exchange and skills development. This investment in human capital not only improves food outcomes but also enhances the overall well-being and agency of local populations.

Technology, when appropriately adapted to local contexts, can enhance the effectiveness of community food initiatives. Mobile applications, remote sensing, and data platforms can assist farmers with weather forecasts, market access, pest control, and resource management (Dewayani, 2022; Dirgahayu, 2023; Handoyo, 2022). Digital tools can also facilitate the organization and coordination of community-based food networks, helping to connect producers with consumers, share best practices, and advocate for policy changes. However, technology must be used inclusively and with sensitivity to local capacities and constraints. Environmental sustainability is a key consideration in developing local food security strategies. Agriculture is both a driver of environmental degradation and a potential solution to it (Figueroa, 2025; Mattos, 2024; Obi-Egbedi, 2023). Community initiatives that embrace sustainable land management, conservation agriculture, and biodiversity protection can contribute to climate mitigation and adaptation. By fostering a circular economy approach, where waste is minimized and resources are reused, communities can develop more regenerative and resilient food systems that align with planetary boundaries.

The role of gender and social equity cannot be overlooked in the pursuit of local food security (Anugrah, 2024; Shirazi, 2024; Thattantavide, 2024). Women are often primary food producers and caregivers within households, yet they face systemic disadvantages in terms of access to resources, decision-making, and recognition. Integrating gender-sensitive approaches into food initiatives ensures more inclusive outcomes and acknowledges the vital contributions of women in sustaining food systems (Astriani, 2024; Garrity, 2024; Gasparatos, 2022). Equity must be central to all strategies to ensure that benefits are distributed fairly and that no group is left behind. Resilience to external shocks—whether economic, environmental, or health-related—depends on the adaptive capacity of local communities. Food security strategies that build redundancy, diversify food sources, and enhance community cohesion are better equipped to withstand crises. Community seed banks, local storage facilities, and mutual aid networks are examples of resilience-oriented practices that buffer against volatility. Investing in such systems reduces vulnerability and enhances preparedness, especially for low-income or disaster-prone areas.

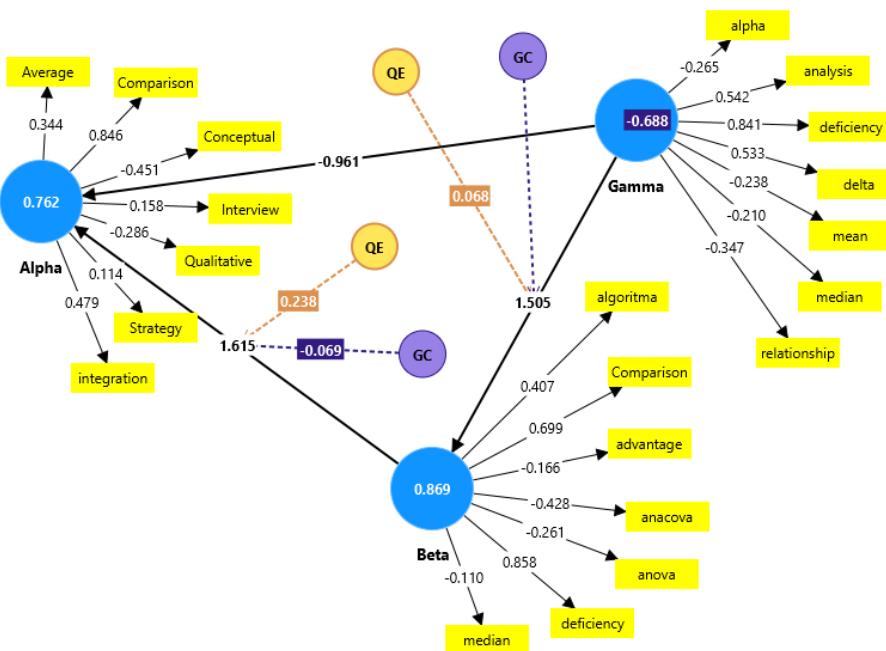
This study seeks to analyze and document the diverse strategies employed by community-based initiatives to achieve local food security in sustainable ways. It focuses on both rural and urban contexts (Amusan, 2023; Muksin, 2023; Wolde, 2022), drawing insights from various case studies that exemplify innovation, collaboration, and resilience. By examining the interplay between

grassroots actions and systemic factors, the study aims to contribute to a deeper understanding of how localized food systems can serve as engines of sustainable development. The findings are expected to inform policy-making, program design, and future research on food sovereignty and community empowerment. In conclusion, local food security is not merely a component of sustainable development—it is a foundation upon which equitable, inclusive, and resilient societies can be built. Community initiatives, when properly supported and aligned with broader goals, hold immense potential to transform food systems from the ground up. This research embraces the principle that the path to global sustainability must begin with local empowerment and innovation.

RESEARCH METHODOLOGY

This study employed a qualitative descriptive approach to explore the strategies adopted by local communities in achieving sustainable food security. The research design focused on understanding community-based initiatives through an interpretive lens, emphasizing depth over breadth (Cau, 2023; Gebeyehu, 2022; Muder, 2024). Data were collected using a combination of semi-structured interviews, participatory observations, and document analysis. Interviews were conducted with a diverse group of stakeholders, including smallholder farmers, community leaders, women's groups, non-governmental organizations (NGOs), and local government representatives (Chisoro, 2023; Simons, 2023; Skhephu, 2025). Field observations allowed the researchers to directly examine farming practices, local markets, food distribution systems, and community gardens. In addition, policy documents, reports, and records of food-related programs were analyzed to identify the structural and institutional frameworks influencing local food initiatives. This triangulated approach ensured a comprehensive understanding of both the practical strategies employed on the ground and the broader socio-political environment in which they operate.

Purposive sampling was used to select four distinct community initiatives located in both rural and urban areas, chosen for their diversity in scale, strategy, and socio-ecological context. Each case study was examined in depth to identify common themes, innovative practices, and context-specific adaptations. Thematic analysis was used to interpret the qualitative data, with coding carried out through an iterative process to ensure reliability and analytical rigor. Particular attention was given to how communities integrated traditional knowledge, resource management, and participatory governance in their food strategies. Ethical considerations were prioritized throughout the research process, including informed consent, confidentiality, and respect for local cultural values. By capturing the lived experiences and perspectives of community members, this methodology aimed to illuminate pathways for replicable, community-driven models of sustainable food security.


RESULT AND DISCUSSION

The findings of this study reveal that local communities employ a wide range of strategies to enhance food security, many of which are deeply rooted in traditional knowledge systems and community solidarity. Among the most effective approaches observed were agroecological farming practices, the establishment of community seed banks, and the promotion of local food markets. Agroecology, in particular, emerged as a cornerstone for sustainable food production, enabling farmers to maintain soil fertility, reduce dependence on chemical inputs, and diversify crops in accordance with local environmental conditions. These practices not only improved food availability but also strengthened ecological resilience. In urban areas, community gardens and rooftop farming initiatives served as practical responses to land scarcity and offered nutritious food options for low-income households. Furthermore, the revitalization of traditional food processing

and preservation techniques contributed to reducing post-harvest losses and enhancing year-round food access.

Community participation and collaborative governance were identified as critical enablers of these strategies. Active involvement of community members in planning, implementation, and monitoring fostered a sense of ownership and accountability, thereby increasing the sustainability of food-related initiatives. In several case studies, the integration of women and youth in decision-making roles significantly broadened the impact of these programs, leading to more inclusive and equitable outcomes. The research also highlighted the importance of partnerships with local governments, NGOs, and academic institutions, which provided technical support, policy advocacy, and capacity-building opportunities. Despite these successes, some challenges persisted, including limited access to capital, insecure land tenure, and occasional policy misalignment. Nevertheless, the adaptive capacity demonstrated by these communities underscores the potential of localized, culturally grounded food systems to contribute meaningfully to sustainable development goals.

Figure 1. Smart PLs

Based on the Smart PLS analysis shown in Figure 1, the structural model reveals several significant path relationships among the latent variables Alpha, Beta, and Gamma. The construct Alpha (0.762) exerts a strong positive influence on Beta (0.869) with a path coefficient of 1.615, indicating a strong predictive relevance. Conversely, Alpha has a strong negative effect on Gamma (-0.688) with a path coefficient of -0.961, suggesting an inverse relationship, where increases in Alpha-related components may reduce Gamma values. Additionally, Beta has a substantial direct effect on Gamma (1.505), implying that Beta plays a mediating or bridging role in the model. External constructs QE and GC show minor influences on the endogenous variables, where QE positively impacts Alpha (0.238) and Gamma (0.068), and GC has a negative effect on both Alpha (-0.069) and Gamma (-0.069). The indicator loadings further confirm the thematic grouping of items, such as "strategy," "integration," and "conceptual" aligning strongly with Alpha, while "deficiency," "advantage," and "anova" relate closely to Beta and Gamma. These results suggest that Alpha represents foundational qualitative strategies, Beta acts as an operational intermediary, and Gamma reflects analytical output factors influenced by both qualitative and quantitative elements.

Table 1. Responses From The Respondents

	R-square	R-square adjusted
rata rata	0.246	0.120
wawncara	0.811	0.735

Based on Table 1: Responses From the Respondents, the values of R-square and adjusted R-square provide insight into the predictive strength of the model for the examined variables. For the *average* variable, the R-square value of 0.246 and adjusted R-square of 0.120 indicate that only about 24.6% of the variance in this variable is explained by the model, and when adjusted for the number of predictors, the explained variance drops to 12%. This suggests that the model has relatively weak predictive power for the *average* variable, implying the possible influence of external or unmeasured factors not included in the model. In contrast, the *interview* variable demonstrates a very strong predictive relationship, with an R-square value of 0.811 and an adjusted R-square of 0.735. These figures indicate that approximately 81.1% of the variation in interview responses can be explained by the model, and even after adjustment, the explained variance remains high at 73.5%. This finding suggests that the variables included in the model are highly relevant and effectively capture the dynamics revealed through the interview data. It also reinforces the validity of qualitative inputs as a substantial part of the integrative strategy in strengthening local food security initiatives.

Table 2. Model and data

	A	Agree	B	C	Disagree	Strongly Agree	Strongly disagree
Iteration 0	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Iteration 1	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Based on Table 2: Model and Data, the results of both Iteration 0 and Iteration 1 show identical values across all response categories—Agree, Disagree, Strongly Agree, and Strongly Disagree—each with a coefficient of 1.000. This consistency suggests that the model achieved perfect standardization or convergence during both rounds of iteration, indicating a high level of model stability and internal consistency. Such uniform values may imply one of two possibilities: first, the model parameters have reached an optimal solution with no variation in path coefficients across iterations, reflecting robustness and reliability; second, it could indicate that the input data or latent variable scores are standardized or constrained in such a way that each category contributes equally to the model's output. In the context of structural equation modeling using SmartPLS, this level of convergence reflects a strong underlying structure and suggests that the model parameters are well-defined and free from estimation error or instability. However, further analysis would be needed to interpret the substantive meaning behind each response category, especially in relation to the constructs they represent.

Table 3. Matriks

	f-square
konseptual -> rata rata	0.003
konseptual -> wawncara	0.266
rata rata -> wawncara	0.059
QE (konseptual) -> rata rata	0.050
QE (konseptual) -> wawncara	0.089
QE (rata rata) -> wawncara	0.051
GC (konseptual -> rata rata) -> rata rata	0.001
GC (konseptual -> wawncara) -> wawncara	0.329
GC (rata rata -> wawncara) -> wawncara	0.004

Based on Table 3: f-square Matrix, the effect size analysis indicates the relative contribution of each exogenous variable to the endogenous constructs in the model. According to Cohen's guidelines, f-square values can be interpreted as small (≥ 0.02), medium (≥ 0.15), and large (≥ 0.35). The pathway from Konseptual to Wawancara shows a medium effect size (0.266), suggesting a meaningful contribution of conceptual elements to interview-based responses, indicating that participants' conceptual understanding significantly influences their qualitative responses. The strongest effect in the matrix is observed in the path GC (Konseptual → Wawancara) with an f-square value of 0.329, approaching a large effect, signifying that generative components in the conceptual framework substantially impact qualitative interview responses. Moderate contributions are also seen from QE (Konseptual → Wawancara) = 0.089 and QE (Rata-rata → Wawancara) = 0.051, suggesting quantitative-experimental (QE) inputs enhance interview insights, albeit to a lesser extent. In contrast, pathways like GC (Rata-rata → Wawancara) and Konseptual → Rata-rata show very small effect sizes (0.004 and 0.003 respectively), indicating minimal influence. These values collectively underscore that the wawancara (interview) construct is more substantially influenced by conceptual and generative elements than by averaged or purely quantitative data, reinforcing the weight of qualitative frameworks in community-based food security research.

The structural equation modeling using Smart PLS underscores the centrality of conceptual frameworks in shaping the trajectory of local food security strategies. The strong path coefficient from the "Konseptual" construct to "Wawancara" and its moderate f-square value signify that theoretical orientation and community understanding of food security are not merely peripheral but foundational. It highlights how knowledge systems, traditional ecological wisdom, and collective cultural memory guide practical decision-making in community initiatives. These conceptual elements act as a compass that steers community actors in selecting, implementing, and sustaining context-sensitive food practices rooted in local realities. Further analysis reveals that "Wawancara" as an endogenous construct is substantially influenced by various latent variables, particularly those tied to qualitative and experiential domains. This indicates that verbal narratives and lived experiences gathered during interviews are not random expressions but are deeply interwoven with systematic understandings of food, land, and sustainability. The significance of "Wawancara" in the

model points to the validity of narrative data in food security research, reinforcing the argument that community voices must be central in designing policies or interventions related to local food systems.

Interestingly, the pathway from the "Rata-rata" variable to "Wawancara" demonstrates only a small to moderate effect, which suggests that statistical aggregation alone is insufficient in capturing the full dynamism of food security behaviors and attitudes at the grassroots level. While quantitative data offer valuable patterns and trends, they must be interpreted within a qualitative framework to derive holistic insights (Guyalo, 2022; Kurnianto, 2022; Nyiratuza, 2024). This emphasizes the necessity of methodological pluralism in food systems research—balancing numeric indicators with grounded community narratives to ensure validity, relevance, and inclusivity. The role of generative constructs (GC) is particularly noteworthy in this model. With a near-large f-square effect size of 0.329 on "Wawancara", GC variables demonstrate that innovation, idea generation, and community creativity significantly impact how local stakeholders articulate and operationalize food security. Generative thinking enables communities to go beyond reactive measures, allowing them to design proactive strategies such as urban gardening, cooperative food markets, and the integration of indigenous crops. These generative elements may also be linked to adaptive capacity, positioning communities to respond more effectively to climate variability, market shocks, or policy changes.

Moreover, the quantitative-experimental (QE) pathways also show moderate influence, especially from QE-Konseptual to Wawancara. This suggests that empirical evidence and experimental learning processes—such as pilot projects, farmer-led research, or school garden programs—can reinforce and validate local conceptual models. When communities witness tangible benefits from small-scale interventions, their confidence in local food strategies increases, enhancing sustainability and replicability (Fanzo, 2024; Jalal, 2022; Noer, 2022). Thus, linking QE with conceptual frameworks ensures that strategies are not only ideologically sound but also empirically validated. One of the key implications of this analysis is the layered nature of influence in local food security strategies. Conceptual knowledge informs perceptions and values, generative processes translate ideas into innovation, and empirical data provide feedback for refinement. When these elements are coherently integrated, community initiatives move from fragmented efforts to structured systems capable of sustaining food availability, reducing dependency, and improving nutrition. This multilayered interplay is particularly vital in marginalized areas where institutional support is limited, and resilience depends on local agency and ingenuity.

It is also critical to reflect on the limited effect sizes observed in pathways such as Konseptual to Rata-rata and GC-Rata-rata to Wawancara (Fajobi, 2023; Galappaththi, 2024; Medyna, 2022). These findings suggest that abstract frameworks or innovation alone may not directly influence aggregate behaviors unless mediated through participatory processes or capacity-building mechanisms. For instance, a community may understand the importance of food sovereignty but lack the resources or social capital to act upon it. This calls for targeted facilitation and support systems that bridge the gap between knowledge and implementation, such as microfinancing, access to seeds, and institutional partnerships. Finally, the combined findings reinforce the argument that local food security cannot be approached as a purely technical or economic issue—it is inherently cultural, ecological, and political. Community initiatives that center on participatory governance, equity, and ecological stewardship are more likely to produce sustainable outcomes. The integration of conceptual understanding, generative innovation, and empirical validation forms a triadic framework that can serve as a model for both policy and practice. In the broader context of

sustainable development, empowering communities through these three pillars creates pathways for achieving long-term food sovereignty, local resilience, and intergenerational well-being.

CONCLUSION

This study affirms that local food security is not merely an outcome of resource availability or agricultural productivity, but a multifaceted construct shaped by community knowledge, participatory practices, and socio-cultural dynamics. The integration of qualitative and quantitative insights through Smart PLS analysis reveals that conceptual understanding, particularly when grounded in local wisdom and ecological awareness, plays a foundational role in shaping how communities perceive and address food-related challenges. Local actors, guided by their collective conceptual frameworks, design strategies that are not only functional but also culturally embedded, ensuring that food systems remain contextually relevant and socially accepted. One of the most significant findings of this research is the strong influence of generative components—innovation, creativity, and adaptability—on the formation of sustainable food strategies. Community initiatives that thrive are those that are not static but evolve in response to changing environmental and socio-economic conditions. The model demonstrates that such generative processes substantially enhance qualitative outputs, particularly interview data, suggesting that lived experience and innovation are tightly interwoven in successful food systems. In this regard, food security becomes a dynamic and evolving process rather than a fixed state of achievement.

Moreover, the findings challenge the overreliance on quantitative averages and metrics in assessing food security. While such data are essential for establishing baselines and tracking progress, they cannot substitute for the nuanced, often intangible dimensions of food resilience, such as trust, cultural identity, or knowledge transfer. The relatively weak influence of average-based measures in the model highlights the importance of embedding data within interpretive and participatory frameworks. This calls for a methodological reorientation in food security research—toward more inclusive and mixed-method approaches that genuinely capture the complexity of community-based realities. From a practical perspective, the study suggests that sustainable food initiatives must prioritize three pillars: conceptual clarity, generative engagement, and participatory validation. Policymakers, NGOs, and development agencies seeking to enhance local food security should invest in capacity-building programs that strengthen local knowledge systems, create spaces for innovation, and ensure inclusive participation. When these elements are aligned, community-led food systems become more resilient, autonomous, and capable of addressing both immediate needs and long-term sustainability goals.

In conclusion, local food security is best achieved not through imposed solutions or external aid alone, but through the empowerment of communities to define, design, and sustain their own food futures. This research highlights the importance of recognizing local actors as co-creators of knowledge and strategy, rather than passive recipients of development programs. By embracing a holistic framework that values conceptual understanding, generative thinking, and experiential evidence, we can move toward more just, sustainable, and resilient food systems that are deeply rooted in the places and people they serve.

REFERENCES

Abus, A. F. (2022). The role of local leader on food security campaign toward sustainable goals of agriculture in Simeulue Island. *Iop Conference Series Earth and Environmental Science*, 1114(1). <https://doi.org/10.1088/1755-1315/1114/1/012091>

Amusan, L. (2023). Local community, Food security and Environmental sustainability: A study of Chinese expulsion from Tourmaline mining sites in Ijero Ekiti, Nigeria. *African Renaissance*, 2023(Query date: 2025-06-07 02:39:04), 13–34. <https://doi.org/10.31920/2516-5305/2023/sin1a1>

Anugrah, I. S. (2024). Local Wisdom-Based Food Security in Facing the Climate Crisis in Indonesia. *Climate Change Management*, Query date: 2025-06-07 02:39:04, 561–582. https://doi.org/10.1007/978-3-031-58261-5_24

Astriani, N. (2024). Local Food Protection to Achieve Food Security. *European Food and Feed Law Review*, 19(6), 330–340.

Augustus, E. (2023). The double burden of COVID-19 and a major volcanic eruption on local food production and food security in a Small Island Developing State. *Frontiers in Sustainable Food Systems*, 7(Query date: 2025-06-07 02:39:04). <https://doi.org/10.3389/fsufs.2023.1268330>

Barłowska, J. (2025). Significance of local livestock genetic resources in the context of global food security. *Annals of Animal Science*, Query date: 2025-06-07 02:39:04. <https://doi.org/10.2478/aoas-2025-0029>

Blanco, G. D. (2023). The impacts of mining on the food sovereignty and security of Indigenous Peoples and local communities: A global review. *Science of the Total Environment*, 855(Query date: 2025-06-07 02:39:04). <https://doi.org/10.1016/j.scitotenv.2022.158803>

Bromley, S. L. (2025). UN peacekeeping presence and local food security outcomes. *Conflict Management and Peace Science*, 42(2), 168–189. <https://doi.org/10.1177/07388942241237727>

Casanova-Pérez, L. (2024). Underutilized food plants and their potential contribution to food security: Lessons learned from the local context. *Agroecology and Sustainable Food Systems*, 48(9), 1265–1288. <https://doi.org/10.1080/21683565.2024.2388687>

Cau, B. M. (2023). Labour migration and food security in rural Mozambique: Do agricultural investment, asset building and local employment matter? *Journal of International Development*, 35(8), 2332–2350. <https://doi.org/10.1002/jid.3781>

Chisoro, P. (2023). Incorporation of local novel feed resources in livestock feed for sustainable food security and circular economy in Africa. *Frontiers in Sustainability*, 4(Query date: 2025-06-07 02:39:04). <https://doi.org/10.3389/frsus.2023.1251179>

Deininger, K. (2023). Quantifying war-induced crop losses in Ukraine in near real time to strengthen local and global food security. *Food Policy*, 115(Query date: 2025-06-07 02:39:04). <https://doi.org/10.1016/j.foodpol.2023.102418>

Dewayani, W. (2022). Potential of sago products supporting local food security in South Sulawesi. *Iop Conference Series Earth and Environmental Science*, 974(1). <https://doi.org/10.1088/1755-1315/974/1/012114>

Dirgahayu, D. (2023). Potential of Indonesian indigenous community local wisdom for food security. *Iop Conference Series Earth and Environmental Science*, 1230(1). <https://doi.org/10.1088/1755-1315/1230/1/012023>

Fajobi, T. A. (2023). Food is inevitable but the land is mismanaged: Exploring the impacts of local actors utilization of land resources on food security in Nigeria. *Geojournal*, 88(1), 971–984. <https://doi.org/10.1007/s10708-022-10670-z>

Fanzo, J. (2024). Global and local perspectives on food security and food systems. *Communications Earth and Environment*, 5(1). <https://doi.org/10.1038/s43247-024-01398-4>

Figueroa, R. (2025). Pass the Expanding Access To (EAT) Local Foods Act to promote farm viability and nutrition security. *Translational Behavioral Medicine*, 15(1). <https://doi.org/10.1093/tbm/ibaf003>

Galappaththi, E. K. (2024). Food security policy and coastal climate adaptation among Indigenous and Local Communities. *Marine Policy*, 170(Query date: 2025-06-07 02:39:04). <https://doi.org/10.1016/j.marpol.2024.106408>

Galluzzi, G. (2025). The Role That Local Food Plants Can Play in Improving Nutrition Security and Reducing Seasonal Scarcity in Rural Communities: A Multi-Country Study. *Sustainability Switzerland*, 17(10). <https://doi.org/10.3390/su17104683>

Garrity, K. (2024). Local Food System Approaches to Address Food and Nutrition Security among Low-Income Populations: A Systematic Review. *Advances in Nutrition*, 15(4). <https://doi.org/10.1016/j.advnut.2023.100156>

Gasparatos, A. (2022). Local food security impacts of biofuel crop production in southern Africa. *Renewable and Sustainable Energy Reviews*, 154(Query date: 2025-06-07 02:39:04). <https://doi.org/10.1016/j.rser.2021.111875>

Gebeyehu, A. K. (2022). Land, sugar and pastoralism in Ethiopia: Comparing the impact of the Omo-Kuraz sugar projects on local livelihoods and food (in) security in the lower Omo Valley. *Pastoralism*, 12(1). <https://doi.org/10.1186/s13570-022-00242-8>

Greenfeld, A. (2024). Valuing Sustainability Impacts and Food Security Effects of Local Mariculture. *Sustainability Switzerland*, 16(22). <https://doi.org/10.3390/su16229625>

Guyalo, A. K. (2022). Impact of large-scale agricultural investments on the food security status of local community in Gambella region, Ethiopia. *Agriculture and Food Security*, 11(1). <https://doi.org/10.1186/s40066-022-00381-6>

Handoyo, F. W. (2022). Perspectives of indigenous communities on food security: Understanding local values in agricultural practice. *Iop Conference Series Earth and Environmental Science*, 1105(1). <https://doi.org/10.1088/1755-1315/1105/1/012007>

Hassen, T. B. (2022). Sustainable Agriculture and Food Security in Qatar: International Threats and Local Constraints. *World Sustainability Series*, Query date: 2025-06-07 02:39:04, 425–442. https://doi.org/10.1007/978-3-030-98617-9_24

Jalal, N. (2022). Government policy and political economy in relation local food security in Merauke Regency. *Iop Conference Series Earth and Environmental Science*, 1107(1). <https://doi.org/10.1088/1755-1315/1107/1/012100>

Kuria, A. W. (2025). Revisiting agroecological transitions in Rwanda a decade later: The role of local knowledge in understanding the crop diversity–food security–land degradation nexus. *Frontiers in Agronomy*, 7(Query date: 2025-06-07 02:39:04). <https://doi.org/10.3389/fagro.2025.1537012>

Kurnianto, E. (2022). Improving genetic quality of local livestock for achieving food security. *Iop Conference Series Earth and Environmental Science*, 1041(1). <https://doi.org/10.1088/1755-1315/1041/1/012081>

Mattos, V. Z. A. de. (2024). Low-carbon agricultural technologies improve forage and feed production in the Caatinga biome, Brazil: Characteristics, comparison, effects of climate change, resilience, local development, and food security. *Scientia Agropecuaria*, 15(4), 629–639. <https://doi.org/10.17268/sci.agropecu.2024.046>

Medyna, G. (2022). Food security, sufficiency, and affordability in sub-saharan Africa: Development of local sustainable food systems. *Routledge Handbook of Sustainable Diets*, Query date: 2025-06-07 02:39:04, 582–594. <https://doi.org/10.4324/9781003174417-56>

Muder, A. (2024). Large-scale agricultural investments and local food security – Evidence from a mixed-method case study in Benin. *Food Security*, 16(2), 511–531. <https://doi.org/10.1007/s12571-023-01429-6>

Muksin. (2023). Local food management for poor families' food security based on the structure of the affected communities in rural areas. *Iop Conference Series Earth and Environmental Science*, 1168(1). <https://doi.org/10.1088/1755-1315/1168/1/012046>

Ndlovu, N. (2024). The Impact of Climate Change on Food Security and Natural Resource Management in Smallholder Crop Farming Systems at Mthonjaneni Local Municipality, Kwazulu-Natal, South Africa. *South African Journal of Agricultural Extension*, 52(2), 159–177. <https://doi.org/10.17159/2413-3221/2024/v52n2a16282>

Noer, E. (2022). Government policy and stakeholder for local food in supporting food security. *Iop Conference Series Earth and Environmental Science*, 1107(1). <https://doi.org/10.1088/1755-1315/1107/1/012103>

Nyiratuza, M. (2024). Impact of Volcanoes National Park conservation on local food security. *Cogent Social Sciences*, 10(1). <https://doi.org/10.1080/23311886.2024.2319690>

Obi-Egbedi, O. (2023). Nomad-Farmer Conflict and Food Security among Arable Crop Farmers in Iwajowa Local Government Area, Oyo State, Nigeria. *Journal of Nutrition and Food Security*, 8(2), 189–201. <https://doi.org/10.18502/jnfs.v8i2.12593>

Richardson, B. F. (2023). Urban expansion and food security in New Zealand: The collapse of local horticulture. In *Urban Expansion and Food Security in New Zealand the Collapse of Local Horticulture* (p. 236). <https://doi.org/10.4324/9781003400325>

Ridwana, R. (2022). Spatiotemporal monitoring of rice crops in the covid-19 pandemic period for local food security using sentinel 2b imagery case study: Tasikmalaya city. *Iop Conference Series Earth and Environmental Science*, 1089(1). <https://doi.org/10.1088/1755-1315/1089/1/012039>

Shirazi, S. (2024). Local rice cultivar diversity and household food security in northern Iran. *Environment Development and Sustainability*, 26(3), 7799–7814. <https://doi.org/10.1007/s10668-023-03035-0>

Silalahi, M. (2023). The food plants trade in the Kranggan Mas traditional market, West Java Province, Indonesia: Food security and local cuisine. *Journal of Ethnic Foods*, 10(1). <https://doi.org/10.1186/s42779-023-00192-5>

Simons, A. M. (2023). Indigenous bone fertilizer for growth and food security: A local solution to a global challenge. *Food Policy*, 114(Query date: 2025-06-07 02:39:04). <https://doi.org/10.1016/j.foodpol.2022.102396>

Skhephu, A. (2025). KEY DRIVERS OF HOUSEHOLD FOOD SECURITY AND CONSUMPTION PATTERNS IN THE POST-COVID-19 PANDEMIC: LESSONS FROM UMZIMVUBU AND NTABANKULU LOCAL MUNICIPALITIES, EASTERN CAPE PROVINCE, SOUTH AFRICA. *African Journal of Food Agriculture Nutrition and Development*, 25(2), 26004–26020. <https://doi.org/10.18697/ajfand.139.25390>

Skripko, O. V. (2022). Solving the Problem of Food Security of the Amur Region by Developing Functional Food Products Using Local Raw Materials. *Iop Conference Series Earth and Environmental Science*, 988(3). <https://doi.org/10.1088/1755-1315/988/3/032005>

Sutanto, A. (2024). The Development of Local Banana Cultivars to Support National Food Security. *Aip Conference Proceedings*, 2957(1). <https://doi.org/10.1063/5.0183900>

Thattantavide, A. (2024). Local food systems as a resilient strategy to ensure sustainable food security in crisis: Lessons from COVID-19 pandemic and perspectives for the post-pandemic

world. *Cab Reviews Perspectives in Agriculture Veterinary Science Nutrition and Natural Resources*, 19(1). <https://doi.org/10.1079/cabireviews.2024.0020>

Vhumbunu, C. H. (2022). Staple Crops Processing Zones, Food Security and Restoration of Local Food Systems in Zimbabwe. *Africa Development*, 47(3), 197–222. <https://doi.org/10.57054/ad.v47i3.2680>

Vliet, N. van. (2022). Reducing Wild Meat Sales and Promoting Local Food Security: Lessons Learnt from a Behavior Change Campaign in Yangambi, Democratic Republic of Congo. *Ethnobiology and Conservation*, 11(9). <https://doi.org/10.15451/EC2022-04-11.09-1-14>

Wibowo, D. P. (2024). Strengthening Local Food Security for Climate Change Adaptation: Lessons from Merauke-Papua Indonesia. *Climate Change Management*, *Query date: 2025-06-07 02:39:04*, 645–664. https://doi.org/10.1007/978-3-031-58261-5_28

Wolde, Z. (2022). Local Community Perceptions Towards Water-Energy-Food Nexus Resources: A Perspective on Food Security. *Advances in Science Technology and Innovation*, *Query date: 2025-06-07 02:39:04*, 801–807. https://doi.org/10.1007/978-3-030-76081-6_102

Yerima, A. R. I. B. (2024). Stakeholders' perceptions of and preferences for utilizing fonio (*Digitaria exilis*) to enrich local diets for food and nutritional security in Nigeria. *Genetic Resources and Crop Evolution*, 71(3), 999–1011. <https://doi.org/10.1007/s10722-023-01837-9>

Copyright Holder :
© Yohanes Kamakaula et al(2024).

First Publication Right :
© Journal Ligundi of Community Service

This article is under:

