The Impact of Interaction Design on Student Engagement in E-Learning
Downloads
The growing reliance on e-learning platforms has highlighted the importance of interaction design in shaping student engagement and learning outcomes. Poorly designed digital learning environments often lead to low motivation, decreased participation, and reduced retention rates. Ensuring that interaction design effectively supports student engagement is essential for optimizing online learning experiences. This study aims to examine the impact of interaction design elements, including navigation structure, multimedia integration, and user experience, on student engagement in e-learning environments. A mixed-methods approach was employed, combining a usability assessment of e-learning platforms, student engagement surveys, and instructor interviews. Findings indicate that intuitive navigation, interactive multimedia, and real-time feedback mechanisms significantly enhance student participation and learning satisfaction. Statistical analysis revealed a strong correlation between well-designed interaction features and improved student retention rates. The study concludes that incorporating user-centered interaction design principles in e-learning platforms enhances engagement and contributes to more effective learning experiences. Future research should explore adaptive and AI-driven interaction design models to further optimize student-centered digital learning environments.
Bauer, G. R., Churchill, S. M., Mahendran, M., Walwyn, C., Lizotte, D., & Villa-Rueda, A. A. (2021a). Intersectionality in quantitative research: A systematic review of its emergence and applications of theory and methods. SSM - Population Health, 14, 100798. https://doi.org/10.1016/j.ssmph.2021.100798
Bauer, G. R., Churchill, S. M., Mahendran, M., Walwyn, C., Lizotte, D., & Villa-Rueda, A. A. (2021b). Intersectionality in quantitative research: A systematic review of its emergence and applications of theory and methods. SSM - Population Health, 14, 100798. https://doi.org/10.1016/j.ssmph.2021.100798
Bond, M., Buntins, K., Bedenlier, S., Zawacki-Richter, O., & Kerres, M. (2020). Mapping research in student engagement and educational technology in higher education: A systematic evidence map. International Journal of Educational Technology in Higher Education, 17(1). https://doi.org/10.1186/s41239-019-0176-8
Boulianne, S., Lalancette, M., & Ilkiw, D. (2020). “School Strike 4 Climate”: Social Media and the International Youth Protest on Climate Change. Media and Communication, 8(2), 208–218. https://doi.org/10.17645/mac.v8i2.2768
Ferrer, J., Ringer, A., Saville, K., A Parris, M., & Kashi, K. (2022). Students’ motivation and engagement in higher education: The importance of attitude to online learning. Higher Education, 83(2), 317–338. https://doi.org/10.1007/s10734-020-00657-5
Foroughi, B., Senali, M. G., Iranmanesh, M., Khanfar, A., Ghobakhloo, M., Annamalai, N., & Naghmeh-Abbaspour, B. (2024). Determinants of Intention to Use ChatGPT for Educational Purposes: Findings from PLS-SEM and fsQCA. International Journal of Human–Computer Interaction, 40(17), 4501–4520. https://doi.org/10.1080/10447318.2023.2226495
Gainza, P., Sverrisson, F., Monti, F., Rodolà, E., Boscaini, D., Bronstein, M. M., & Correia, B. E. (2020). Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning. Nature Methods, 17(2), 184–192. https://doi.org/10.1038/s41592-019-0666-6
Hiver, P., Al-Hoorie, A. H., Vitta, J. P., & Wu, J. (2024). Engagement in language learning: A systematic review of 20 years of research methods and definitions. Language Teaching Research, 28(1), 201–230. https://doi.org/10.1177/13621688211001289
Huang, C., Mo, R., & Yuen, C. (2020). Reconfigurable Intelligent Surface Assisted Multiuser MISO Systems Exploiting Deep Reinforcement Learning. IEEE Journal on Selected Areas in Communications, 38(8), 1839–1850. https://doi.org/10.1109/jsac.2020.3000835
Khaldi, A., Bouzidi, R., & Nader, F. (2023). Gamification of e-learning in higher education: A systematic literature review. Smart Learning Environments, 10(1). https://doi.org/10.1186/s40561-023-00227-z
Khan, L. U., Saad, W., Niyato, D., Han, Z., & Hong, C. S. (2022). Digital-Twin-Enabled 6G: Vision, Architectural Trends, and Future Directions. IEEE Communications Magazine, 60(1), 74–80. https://doi.org/10.1109/mcom.001.21143
Koltovskaia, S. (2020). Student engagement with automated written corrective feedback (AWCF) provided by Grammarly: A multiple case study. Assessing Writing, 44, 100450. https://doi.org/10.1016/j.asw.2020.100450
Kuhail, M. A., Alturki, N., Alramlawi, S., & Alhejori, K. (2023). Interacting with educational chatbots: A systematic review. Education and Information Technologies, 28(1), 973–1018. https://doi.org/10.1007/s10639-022-11177-3
Leeper, T. J., Hobolt, S. B., & Tilley, J. (2020). Measuring Subgroup Preferences in Conjoint Experiments. Political Analysis, 28(2), 207–221. https://doi.org/10.1017/pan.2019.30
Li, C., Wang, X., Bi, E., Jiang, F., Park, S. M., Li, Y., Chen, L., Wang, Z., Zeng, L., Chen, H., Liu, Y., Grice, C. R., Abudulimu, A., Chung, J., Xian, Y., Zhu, T., Lai, H., Chen, B., Ellingson, R. J., … Yan, Y. (2023). Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells. Science, 379(6633), 690–694. https://doi.org/10.1126/science.ade3970
Lin, C.-C., Huang, A. Y. Q., & Lu, O. H. T. (2023). Artificial intelligence in intelligent tutoring systems toward sustainable education: A systematic review. Smart Learning Environments, 10(1). https://doi.org/10.1186/s40561-023-00260-y
Liu, S., Kang, L., Kim, J. M., Chun, Y. T., Zhang, J., & Jun, S. C. (2020). Recent Advances in Vanadium?Based Aqueous Rechargeable Zinc?Ion Batteries. Advanced Energy Materials, 10(25). https://doi.org/10.1002/aenm.202000477
Maia, E. H. B., Assis, L. C., De Oliveira, T. A., Da Silva, A. M., & Taranto, A. G. (2020). Structure-Based Virtual Screening: From Classical to Artificial Intelligence. Frontiers in Chemistry, 8. https://doi.org/10.3389/fchem.2020.00343
Morse, J. S., Lalonde, T., Xu, S., & Liu, W. R. (2020). Learning from the Past: Possible Urgent Prevention and Treatment Options for Severe Acute Respiratory Infections Caused by 2019?nCoV. ChemBioChem, 21(5), 730–738. https://doi.org/10.1002/cbic.202000047
Patricia Aguilera-Hermida, A. (2020). College students’ use and acceptance of emergency online learning due to COVID-19. International Journal of Educational Research Open, 1, 100011. https://doi.org/10.1016/j.ijedro.2020.100011
Paul, D., Sanap, G., Shenoy, S., Kalyane, D., Kalia, K., & Tekade, R. K. (2021). Artificial intelligence in drug discovery and development. Drug Discovery Today, 26(1), 80–93. https://doi.org/10.1016/j.drudis.2020.10.010
Raes, A., Vanneste, P., Pieters, M., Windey, I., Van Den Noortgate, W., & Depaepe, F. (2020). Learning and instruction in the hybrid virtual classroom: An investigation of students’ engagement and the effect of quizzes. Computers & Education, 143, 103682. https://doi.org/10.1016/j.compedu.2019.103682
Rombach, F. M., Haque, S. A., & Macdonald, T. J. (2021). Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells. Energy & Environmental Science, 14(10), 5161–5190. https://doi.org/10.1039/d1ee02095a
Seo, K., Tang, J., Roll, I., Fels, S., & Yoon, D. (2021). The impact of artificial intelligence on learner–instructor interaction in online learning. International Journal of Educational Technology in Higher Education, 18(1). https://doi.org/10.1186/s41239-021-00292-9
Tight, M. (2020). Student retention and engagement in higher education. Journal of Further and Higher Education, 44(5), 689–704. https://doi.org/10.1080/0309877x.2019.1576860
Wang, D., Sun, Q., Hokkanen, M. J., Zhang, C., Lin, F.-Y., Liu, Q., Zhu, S.-P., Zhou, T., Chang, Q., He, B., Zhou, Q., Chen, L., Wang, Z., Ras, R. H. A., & Deng, X. (2020). Design of robust superhydrophobic surfaces. Nature, 582(7810), 55–59. https://doi.org/10.1038/s41586-020-2331-8
Wang, Y., Zheng, X., & Wang, D. (2022). Design concept for electrocatalysts. Nano Research, 15(3), 1730–1752. https://doi.org/10.1007/s12274-021-3794-0
Xu, J., Zhang, J., Pollard, T. P., Li, Q., Tan, S., Hou, S., Wan, H., Chen, F., He, H., Hu, E., Xu, K., Yang, X.-Q., Borodin, O., & Wang, C. (2023). Electrolyte design for Li-ion batteries under extreme operating conditions. Nature, 614(7949), 694–700. https://doi.org/10.1038/s41586-022-05627-8
Yang, X., Chen, Z., Zhao, W., Liu, C., Qian, X., Zhang, M., Wei, G., Khan, E., Hau Ng, Y., & Sik Ok, Y. (2021). Recent advances in photodegradation of antibiotic residues in water. Chemical Engineering Journal, 405, 126806. https://doi.org/10.1016/j.cej.2020.126806
Zhao, C., Wang, Q., Yao, Z., Wang, J., Sánchez-Lengeling, B., Ding, F., Qi, X., Lu, Y., Bai, X., Li, B., Li, H., Aspuru-Guzik, A., Huang, X., Delmas, C., Wagemaker, M., Chen, L., & Hu, Y.-S. (2020). Rational design of layered oxide materials for sodium-ion batteries. Science, 370(6517), 708–711. https://doi.org/10.1126/science.aay9972
Copyright (c) 2025 Djuwari Djuwari, Herlina Meilina, Suroyo Suroyo, Esti Raihana, Maisarah Maisarah

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


















