Multiple Intellegences-Based & Learning Innovation Towards Era 5.0
Downloads
The development and advancement of technology at this time is very beneficial for human life, especially in the world of education where with the development of this technology students are expected to improve their performance in lessons. But mostly what happens at this time is the lack of teacher attention to the intelligence possessed by the child. Every child certainly has different intelligence, for that teachers are required to be able to understand and analyze the intelligence possessed by their students. With this multiple intelligence-based learning innovation, teachers can improve learning outcomes according to the abilities and intelligence possessed by each child. The purpose of this research is to find out how multiple intelligence-based learning is appropriate in the teaching and learning process. The method used from this research is quantitative method by using Google From and WhatsApps application. The results of this study indicate that multiple intelligence-based learning is very well applied in learning. The conclusion of this study explains that the application of multiple intelligence-based learning is very good for improving children's learning outcomes so that children's achievement can increase from the previous one. The limitation of this research is that researchers do not make how many percent of educators who have been able to apply multiple intelligence in learning and the extent of development that has been achieved by educators, for that it is hoped that further researchers can conduct more complete research
Adadi, A., & Berrada, M. (2018). Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI). IEEE Access, 6, 52138–52160. https://doi.org/10.1109/ACCESS.2018.2870052
Adl, S. M., Bass, D., Lane, C. E., Lukeš, J., Schoch, C. L., Smirnov, A., Agatha, S., Berney, C., Brown, M. W., Burki, F., Cárdenas, P., ?epi?ka, I., Chistyakova, L., Campo, J., Dunthorn, M., Edvardsen, B., Eglit, Y., Guillou, L., Hampl, V., … Zhang, Q. (2019). Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes. Journal of Eukaryotic Microbiology, 66(1), 4–119. https://doi.org/10.1111/jeu.12691
Backfisch, I., Lachner, A., Hische, C., Loose, F., & Scheiter, K. (2020). Professional knowledge or motivation? Investigating the role of teachers’ expertise on the quality of technology-enhanced lesson plans. Learning and Instruction, 66, 101300. https://doi.org/10.1016/j.learninstruc.2019.101300
Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., & Herrera, F. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82–115. https://doi.org/10.1016/j.inffus.2019.12.012
Batlle, D., Wysocki, J., & Satchell, K. (2020). Soluble angiotensin-converting enzyme 2: A potential approach for coronavirus infection therapy? Clinical Science, 134(5), 543–545. https://doi.org/10.1042/CS20200163
Bordeleau, F.-E., Mosconi, E., & de Santa-Eulalia, L. A. (2020). Business intelligence and analytics value creation in Industry 4.0: A multiple case study in manufacturing medium enterprises. Production Planning & Control, 31(2–3), 173–185. https://doi.org/10.1080/09537287.2019.1631458
Borel, J., Palot, A., & Patout, M. (2019). Technological advances in home non?invasive ventilation monitoring: Reliability of data and effect on patient outcomes. Respirology, 24(12), 1143–1151. https://doi.org/10.1111/resp.13497
Byambasuren, O., Cardona, M., Bell, K., Clark, J., McLaws, M.-L., & Glasziou, P. (2020). Estimating the extent of asymptomatic COVID-19 and its potential for community transmission: Systematic review and meta-analysis. Official Journal of the Association of Medical Microbiology and Infectious Disease Canada, 5(4), 223–234. https://doi.org/10.3138/jammi-2020-0030
Chen, Y., Tang, Z., Zhang, X., Liu, Y., Wu, S., & Guo, B. (2018). Covalently Cross-Linked Elastomers with Self-Healing and Malleable Abilities Enabled by Boronic Ester Bonds. ACS Applied Materials & Interfaces, 10(28), 24224–24231. https://doi.org/10.1021/acsami.8b09863
Conner, T. S., DeYoung, C. G., & Silvia, P. J. (2018). Everyday creative activity as a path to flourishing. The Journal of Positive Psychology, 13(2), 181–189. https://doi.org/10.1080/17439760.2016.1257049
Deringer, V. L., Caro, M. A., & Csányi, G. (2019). Machine Learning Interatomic Potentials as Emerging Tools for Materials Science. Advanced Materials, 31(46), 1902765. https://doi.org/10.1002/adma.201902765
Dhiman, G., & Kumar, V. (2019). Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowledge-Based Systems, 165, 169–196. https://doi.org/10.1016/j.knosys.2018.11.024
Feng, Z., Hu, J., Zuo, H., Ning, N., Zhang, L., Yu, B., & Tian, M. (2019). Photothermal-Induced Self-Healable and Reconfigurable Shape Memory Bio-Based Elastomer with Recyclable Ability. ACS Applied Materials & Interfaces, 11(1), 1469–1479. https://doi.org/10.1021/acsami.8b18002
Fink, L., Ploeger, A., & Strassner, C. (2018). Participative Processes as a Chance for Developing Ideas to Bridge the Intention-Behavior Gap Concerning Sustainable Diets. Sustainability, 10(12), 4434. https://doi.org/10.3390/su10124434
Haenssle, H. A., Fink, C., Schneiderbauer, R., Toberer, F., Buhl, T., Blum, A., Kalloo, A., Hassen, A. B. H., Thomas, L., Enk, A., Uhlmann, L., Alt, C., Arenbergerova, M., Bakos, R., Baltzer, A., Bertlich, I., Blum, A., Bokor-Billmann, T., Bowling, J., … Zalaudek, I. (2018). Man against machine: Diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Annals of Oncology, 29(8), 1836–1842. https://doi.org/10.1093/annonc/mdy166
Hasanah, R. U. (2018). INOVASI PEMBELAJARAN PAI BERBASIS MULTIPLE INTELLIGENCES [Preprint]. Open Science Framework. https://doi.org/10.31219/osf.io/5v4kn
Hay-Lombardie, A., Pallet, N., & Bigot-Corbel, E. (2018). Quantitative measurement of urinary proteins in 2018: Advantages, disadvantages, limits. Annales de Biologie Clinique, 76(6), 627–631. https://doi.org/10.1684/abc.2018.1389
Kendal, R. L., Boogert, N. J., Rendell, L., Laland, K. N., Webster, M., & Jones, P. L. (2018). Social Learning Strategies: Bridge-Building between Fields. Trends in Cognitive Sciences, 22(7), 651–665. https://doi.org/10.1016/j.tics.2018.04.003
Kim, D., Kang, S., Yoo, J., Kim, D.-K., & Youn, B. (2021). A study on the quantitative single and dual fault diagnosis of residential split type air conditioners in static operation using support vector machine method. International Journal of Refrigeration, 131, 206–217. https://doi.org/10.1016/j.ijrefrig.2021.07.002
König, J., Bremerich-Vos, A., Buchholtz, C., & Glutsch, N. (2020). General pedagogical knowledge, pedagogical adaptivity in written lesson plans, and instructional practice among preservice teachers. Journal of Curriculum Studies, 52(6), 800–822. https://doi.org/10.1080/00220272.2020.1752804
Li, L., Qin, L., Xu, Z., Yin, Y., Wang, X., Kong, B., Bai, J., Lu, Y., Fang, Z., Song, Q., Cao, K., Liu, D., Wang, G., Xu, Q., Fang, X., Zhang, S., Xia, J., & Xia, J. (2020). Using Artificial Intelligence to Detect COVID-19 and Community-acquired Pneumonia Based on Pulmonary CT: Evaluation of the Diagnostic Accuracy. Radiology, 296(2), E65–E71. https://doi.org/10.1148/radiol.2020200905
Liu, H., Mi, X., & Li, Y. (2018). Wind speed forecasting method based on deep learning strategy using empirical wavelet transform, long short term memory neural network and Elman neural network. Energy Conversion and Management, 156, 498–514. https://doi.org/10.1016/j.enconman.2017.11.053
Liu, Y., Su, Y., Guan, J., Cao, J., Zhang, R., He, M., Gao, K., Zhou, L., & Jiang, Z. (2018). 2D Heterostructure Membranes with Sunlight-Driven Self-Cleaning Ability for Highly Efficient Oil-Water Separation. Advanced Functional Materials, 28(13), 1706545. https://doi.org/10.1002/adfm.201706545
MacDonald, N., Mohsni, E., Al-Mazrou, Y., Kim Andrus, J., Arora, N., Elden, S., Madrid, M.-Y., Martin, R., Mahmoud Mustafa, A., Rees, H., Salisbury, D., Zhao, Q., Jones, I., Steffen, C. A., Hombach, J., O’Brien, K. L., & Cravioto, A. (2020). Global vaccine action plan lessons learned I: Recommendations for the next decade. Vaccine, 38(33), 5364–5371. https://doi.org/10.1016/j.vaccine.2020.05.003
MacIntyre, P. D., Gregersen, T., & Mercer, S. (2020). Language teachers’ coping strategies during the Covid-19 conversion to online teaching: Correlations with stress, wellbeing and negative emotions. System, 94, 102352. https://doi.org/10.1016/j.system.2020.102352
Malik, A., Kumar, A., Kim, S., Kashani, M. H., Karimi, V., Sharafati, A., Ghorbani, M. A., Al-Ansari, N., Salih, S. Q., Yaseen, Z. M., & Chau, K.-W. (2020). Modeling monthly pan evaporation process over the Indian central Himalayas: Application of multiple learning artificial intelligence model. Engineering Applications of Computational Fluid Mechanics, 14(1), 323–338. https://doi.org/10.1080/19942060.2020.1715845
Martinez, M. A. (2020). Compounds with Therapeutic Potential against Novel Respiratory 2019 Coronavirus. Antimicrobial Agents and Chemotherapy, 64(5), e00399-20. https://doi.org/10.1128/AAC.00399-20
Moorhouse, B. L. (2020). Adaptations to a face-to-face initial teacher education course ‘forced’ online due to the COVID-19 pandemic. Journal of Education for Teaching, 46(4), 609–611. https://doi.org/10.1080/02607476.2020.1755205
Mueller, J., Lu, H., Chirkin, A., Klein, B., & Schmitt, G. (2018). Citizen Design Science: A strategy for crowd-creative urban design. Cities, 72, 181–188. https://doi.org/10.1016/j.cities.2017.08.018
Nurhidayati, T. (2016). INOVASI PEMBELAJARAN PAI BERBASIS MULTIPLE INTELLIGENCES. Jurnal Pendidikan Agama Islam (Journal of Islamic Education Studies), 3(1), 23. https://doi.org/10.15642/jpai.2015.3.1.23-56
O.Nyumba, T., Wilson, K., Derrick, C. J., & Mukherjee, N. (2018). The use of focus group discussion methodology: Insights from two decades of application in conservation. Methods in Ecology and Evolution, 9(1), 20–32. https://doi.org/10.1111/2041-210X.12860
Pasolli, E., Asnicar, F., Manara, S., Zolfo, M., Karcher, N., Armanini, F., Beghini, F., Manghi, P., Tett, A., Ghensi, P., Collado, M. C., Rice, B. L., DuLong, C., Morgan, X. C., Golden, C. D., Quince, C., Huttenhower, C., & Segata, N. (2019). Extensive Unexplored Human Microbiome Diversity Revealed by Over 150,000 Genomes from Metagenomes Spanning Age, Geography, and Lifestyle. Cell, 176(3), 649-662.e20. https://doi.org/10.1016/j.cell.2019.01.001
Purser, E., Dreyfus, S., & Jones, P. (2020). Big ideas & sharp focus: Researching and developing students’ academic writing across the disciplines. Journal of English for Academic Purposes, 43, 100807. https://doi.org/10.1016/j.jeap.2019.100807
Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378, 686–707. https://doi.org/10.1016/j.jcp.2018.10.045
Sahin, A. (2018). Critical Issues in Islamic Education Studies: Rethinking Islamic and Western Liberal Secular Values of Education. Religions, 9(11), 335. https://doi.org/10.3390/rel9110335
Saunders, A., Macosko, E. Z., Wysoker, A., Goldman, M., Krienen, F. M., de Rivera, H., Bien, E., Baum, M., Bortolin, L., Wang, S., Goeva, A., Nemesh, J., Kamitaki, N., Brumbaugh, S., Kulp, D., & McCarroll, S. A. (2018). Molecular Diversity and Specializations among the Cells of the Adult Mouse Brain. Cell, 174(4), 1015-1030.e16. https://doi.org/10.1016/j.cell.2018.07.028
Scherer, R., Siddiq, F., & Tondeur, J. (2019). The technology acceptance model (TAM): A meta-analytic structural equation modeling approach to explaining teachers’ adoption of digital technology in education. Computers & Education, 128, 13–35. https://doi.org/10.1016/j.compedu.2018.09.009
Shankardass, K., O’Campo, P., Muntaner, C., Bayoumi, A. M., & Kokkinen, L. (2018). Ideas for Extending the Approach to Evaluating Health in All Policies in South Australia Comment on “Developing a Framework for a Program Theory-Based Approach to Evaluating Policy Processes and Outcomes: Health in All Policies in South Australia.” International Journal of Health Policy and Management, 7(8), 755–757. https://doi.org/10.15171/ijhpm.2018.25
Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039
Soukoulis, C., & Bohn, T. (2018). A comprehensive overview on the micro- and nano-technological encapsulation advances for enhancing the chemical stability and bioavailability of carotenoids. Critical Reviews in Food Science and Nutrition, 58(1), 1–36. https://doi.org/10.1080/10408398.2014.971353
Suyadi, Nuryana, Z., & Fauzi, N. A. F. (2020). The fiqh of disaster: The mitigation of Covid-19 in the perspective of Islamic education-neuroscience. International Journal of Disaster Risk Reduction, 51, 101848. https://doi.org/10.1016/j.ijdrr.2020.101848
Toxiri, S., Näf, M. B., Lazzaroni, M., Fernández, J., Sposito, M., Poliero, T., Monica, L., Anastasi, S., Caldwell, D. G., & Ortiz, J. (2019). Back-Support Exoskeletons for Occupational Use: An Overview of Technological Advances and Trends. IISE Transactions on Occupational Ergonomics and Human Factors, 7(3–4), 237–249. https://doi.org/10.1080/24725838.2019.1626303
van der Leest, M., Cornel, E., Israël, B., Hendriks, R., Padhani, A. R., Hoogenboom, M., Zamecnik, P., Bakker, D., Setiasti, A. Y., Veltman, J., van den Hout, H., van der Lelij, H., van Oort, I., Klaver, S., Debruyne, F., Sedelaar, M., Hannink, G., Rovers, M., Hulsbergen-van de Kaa, C., & Barentsz, J. O. (2019). Head-to-head Comparison of Transrectal Ultrasound-guided Prostate Biopsy Versus Multiparametric Prostate Resonance Imaging with Subsequent Magnetic Resonance-guided Biopsy in Biopsy-naïve Men with Elevated Prostate-specific Antigen: A Large Prospective Multicenter Clinical Study. European Urology, 75(4), 570–578. https://doi.org/10.1016/j.eururo.2018.11.023
Vinoth, A., & Datta, S. (2020). Design of the ultrahigh molecular weight polyethylene composites with multiple nanoparticles: An artificial intelligence approach. Journal of Composite Materials, 54(2), 179–192. https://doi.org/10.1177/0021998319859924
Wang, Y., Chen, Q., Hong, T., & Kang, C. (2019). Review of Smart Meter Data Analytics: Applications, Methodologies, and Challenges. IEEE Transactions on Smart Grid, 10(3), 3125–3148. https://doi.org/10.1109/TSG.2018.2818167
Wu, C., Liu, Y., Yang, Y., Zhang, P., Zhong, W., Wang, Y., Wang, Q., Xu, Y., Li, M., Li, X., Zheng, M., Chen, L., & Li, H. (2020). Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica B, 10(5), 766–788. https://doi.org/10.1016/j.apsb.2020.02.008
Wu, Y., Tan, H., Peng, J., Zhang, H., & He, H. (2019). Deep reinforcement learning of energy management with continuous control strategy and traffic information for a series-parallel plug-in hybrid electric bus. Applied Energy, 247, 454–466. https://doi.org/10.1016/j.apenergy.2019.04.021
Yudiawan, A., Sunarso, B., Suharmoko, S., Sari, F., & Ahmadi, A. (2021). Successful online learning factors in COVID-19 era: Study of Islamic higher education in West Papua, Indonesia. International Journal of Evaluation and Research in Education (IJERE), 10(1), 193. https://doi.org/10.11591/ijere.v10i1.21036
Zhang, W., Wang, K., Yin, L., Zhao, W., Xue, Q., Peng, M., Min, B., Tian, Q., Leng, H., Du, J., Chang, H., Yang, Y., Li, W., Shangguan, F., Yan, T., Dong, H., Han, Y., Wang, Y., Cosci, F., & Wang, H. (2020). Mental Health and Psychosocial Problems of Medical Health Workers during the COVID-19 Epidemic in China. Psychotherapy and Psychosomatics, 89(4), 242–250. https://doi.org/10.1159/000507639
Zhang, Y., Wen, C., Wang, C., Antonov, S., Xue, D., Bai, Y., & Su, Y. (2020). Phase prediction in high entropy alloys with a rational selection of materials descriptors and machine learning models. Acta Materialia, 185, 528–539. https://doi.org/10.1016/j.actamat.2019.11.067
Zhu, M., Sun, Z., Zhang, Z., Shi, Q., He, T., Liu, H., Chen, T., & Lee, C. (2020). Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications. Science Advances, 6(19), eaaz8693. https://doi.org/10.1126/sciadv.aaz8693
Copyright (c) 2023 Gergely Maja, Chandrasekaran María-José, Shuxiang Anindya, Anna Malin, Larasati Karin

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


















