The Role of MOOCs in Lifelong Learning and Professional Development
Downloads
Massive Open Online Courses (MOOCs) have emerged as a key tool for promoting lifelong learning and professional development in the digital age. As technology continues to evolve, individuals and professionals alike are seeking flexible, accessible educational opportunities to advance their skills and knowledge. MOOCs provide an affordable and scalable solution, allowing learners to engage with high-quality content from institutions worldwide. However, the effectiveness of MOOCs in supporting lifelong learning and professional growth remains underexplored. This study aims to evaluate the role of MOOCs in facilitating lifelong learning and enhancing professional development outcomes. A mixed-methods approach was employed, combining quantitative surveys and qualitative interviews with 300 participants who have completed MOOCs across various disciplines. The study focuses on participants’ motivations, experiences, and the perceived impact of MOOCs on their personal and professional growth. Data were analyzed using statistical techniques to identify patterns and thematic analysis to gain deeper insights into learner experiences. The results indicate that MOOCs play a significant role in promoting self-directed learning, with 80% of respondents reporting that MOOCs contributed to their personal knowledge and skill development. Additionally, 60% of participants highlighted that completing MOOCs led to career advancements or improved job performance. However, barriers such as completion rates and lack of personalized feedback remain challenges for maximizing the impact of MOOCs. In conclusion, MOOCs offer substantial benefits for lifelong learning and professional development, particularly in terms of accessibility and flexibility. To fully harness their potential, improvements in course design and support mechanisms are necessary to increase completion rates and learner engagement.
Allan, J. F., Doran, A., Jones, R., & Farrell, S. (2024). Building resilience and well-being for post-covid adolescents through outdoor adventure. Journal of Adventure Education and Outdoor Learning, 1–27. https://doi.org/10.1080/14729679.2024.2312920
Andersen, M. B. (2021). Et kvantitativt blik på forældredeltagelse i skolesamarbejdet: Generelle tendenser i forhold til uddannelse, køn og klassetrin. Nordic Studies in Education, 41(4), 331–348. https://doi.org/10.23865/nse.v41.2813
Angell, K., & Huseby, R. (2019). Global Luck Egalitarianism and Border Control. Ratio Juris, 32(2), 177–192. https://doi.org/10.1111/raju.12236
Babu, V. D., & Malathi, K. (2023). Three-stage multi-objective feature selection for distributed systems. Soft Computing. https://doi.org/10.1007/s00500-023-07865-y
Benedetti, B., Dannehl, D., König, R., Coviello, S., Kreutzer, C., Zaunmair, P., Jakubecova, D., Weiger, T. M., Aigner, L., Nacher, J., Engelhardt, M., & Couillard-Després, S. (2020). Functional Integration of Neuronal Precursors in the Adult Murine Piriform Cortex. Cerebral Cortex, 30(3), 1499–1515. https://doi.org/10.1093/cercor/bhz181
Brandherm, F., Peters, J., Neumann, G., & Akrour, R. (2019). Learning Replanning Policies With Direct Policy Search. IEEE Robotics and Automation Letters, 4(2), 2196–2203. https://doi.org/10.1109/LRA.2019.2901656
Brix, J. (2019). Ambidexterity and organizational learning: Revisiting and reconnecting the literatures. The Learning Organization, 26(4), 337–351. https://doi.org/10.1108/TLO-02-2019-0034
Bu, N., Khlif, M. S., Lemmens, R., Wouters, A., Fiebach, J. B., Chamorro, A., Ringelstein, E. B., Norrving, B., Laage, R., Grond, M., Wilms, G., Brodtmann, A., & Thijs, V. (2021). Imaging Markers of Brain Frailty and Outcome in Patients With Acute Ischemic Stroke. Stroke, 52(3), 1004–1011. https://doi.org/10.1161/STROKEAHA.120.029841
C, L. R., & K, M. (2024). Real-Time Detection and Categorization of Cache Side-Channel Attacks Using Deep Learning and Morlet Wavelet Assistance. International Journal of Electronics and Communication Engineering, 11(1), 15–27. https://doi.org/10.14445/23488549/IJECE-V11I1P102
Cadogan, A., & Potter, M. (2023). Evaluating the benefits of the MOVE mentoring programme to mentors and early career physiotherapists. New Zealand Journal of Physiotherapy, 51(3). https://doi.org/10.15619/nzjp.v51i3.373
Chourreu, P., Guerret, O., Guillonneau, L., Gayon, E., & Lefèvre, G. (2020). Short and Easily Scalable Synthesis of the Sex Pheromone of the Horse-Chestnut Leaf Miner ( Cameraria ohridella ) Relying on a Key Ligand- and Additive-Free Iron-Catalyzed Cross-Coupling. Organic Process Research & Development, 24(7), 1335–1340. https://doi.org/10.1021/acs.oprd.0c00191
Christensen, R., Greenhalgh, S., & Thomassen, A. (2019). When a Business Case Is Not Enough, Motivation to Work With Lean. 275–286. https://doi.org/10.24928/2019/0146
D’Arcy, M. S. (2019). Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biology International, 43(6), 582–592. https://doi.org/10.1002/cbin.11137
Esmaeili Charkhab, M., Liu, Y., Belousov, B., Peters, J., & Tessmann, O. (2023). Designing for Robotic (Dis-)Assembly. In K. Dörfler, J. Knippers, A. Menges, S. Parascho, H. Pottmann, & T. Wortmann (Eds.), Advances in Architectural Geometry 2023 (pp. 275–288). De Gruyter. https://doi.org/10.1515/9783111162683-021
Evers, D.-H., Carle, S., Lakatos, D., Hämmerling, F., Garidel, P., & Buske, J. (2021). Hydrolytic polysorbate 20 degradation – Sensitive detection of free fatty acids in biopharmaceuticals via UPLC-QDa analytics with isolator column. Journal of Chromatography B, 1174, 122717. https://doi.org/10.1016/j.jchromb.2021.122717
Funk, N., Helmut, E., Chalvatzaki, G., Calandra, R., & Peters, J. (2024). Evetac: An Event-Based Optical Tactile Sensor for Robotic Manipulation. IEEE Transactions on Robotics, 40, 3812–3832. https://doi.org/10.1109/TRO.2024.3428430
Henkel, O., Hills, L., Boxer, A., Roberts, B., & Levonian, Z. (2024). Can Large Language Models Make the Grade? An Empirical Study Evaluating LLMs Ability To Mark Short Answer Questions in K-12 Education. Proceedings of the Eleventh ACM Conference on Learning @ Scale, 300–304. https://doi.org/10.1145/3657604.3664693
Herbig, M. E., Evers, D.-H., Gorissen, S., & Köllmer, M. (2023). Rational Design of Topical Semi-Solid Dosage Forms-How Far Are We? Pharmaceutics, 15(7), 1822. https://doi.org/10.3390/pharmaceutics15071822
Hindhede, A. L., & Andersen, V. (2019). Interdisciplinary Promises and Hierarchical Ambiguities in a Danish Hospital Context. Professions and Professionalism, 9(1). https://doi.org/10.7577/pp.2862
Hindhede, A. L., & Højbjerg, K. (2022). How Teachers Balance Language Proficiency and Pedagogical Ideals at Universities in Indigenous and Postcolonial Societies: The Case of the University of Greenland. Journal of Language, Identity & Education, 21(6), 439–452. https://doi.org/10.1080/15348458.2020.1832496
Kaup, C. F. (2022). Kortlægning af relationen mellem computationel tankegang og matematik med udgangspunkt i problemløsning. Acta Didactica Norden, 16(4). https://doi.org/10.5617/adno.9185
Kim, B. J., & Chung, J.-B. (2021). When beef consumption becomes politicized: Longitudinal change of US beef purchase intention and political values in Korea. Food Policy, 105, 102171. https://doi.org/10.1016/j.foodpol.2021.102171
Klink, P., D’Eramo, C., Peters, J., & Pajarinen, J. (2024). On the Benefit of Optimal Transport for Curriculum Reinforcement Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 46(11), 7191–7204. https://doi.org/10.1109/TPAMI.2024.3390051
Köllmer, M., Mossahebi, P., Sacharow, E., Gorissen, S., Gräfe, N., Evers, D.-H., & Herbig, M. E. (2019). Investigation of the Compatibility of the Skin PAMPA Model with Topical Formulation and Acceptor Media Additives Using Different Assay Setups. AAPS PharmSciTech, 20(2), 89. https://doi.org/10.1208/s12249-019-1305-3
Kollosche, D., Marcone, R., Knigge, M., Penteado, M. G., & Skovsmose, O. (2019). Inclusive Mathematics Education: An Introduction. In D. Kollosche, R. Marcone, M. Knigge, M. G. Penteado, & O. Skovsmose (Eds.), Inclusive Mathematics Education (pp. 3–6). Springer International Publishing. https://doi.org/10.1007/978-3-030-11518-0_1
Laffan, C. F., Coleshill, J. E., Stanfield, B., Stanfield, M., & Ferworn, A. (2020). Using the ARAIG Haptic Suit to Assist in Navigating Firefighters Out of Hazardous Environments. 2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), 0439–0444. https://doi.org/10.1109/IEMCON51383.2020.9284922
Liu, P., Zhang, K., Tateo, D., Jauhri, S., Hu, Z., Peters, J., & Chalvatzaki, G. (2023). Safe Reinforcement Learning of Dynamic High-Dimensional Robotic Tasks: Navigation, Manipulation, Interaction. 2023 IEEE International Conference on Robotics and Automation (ICRA), 9449–9456. https://doi.org/10.1109/ICRA48891.2023.10161548
Liu, Y., Belousov, B., Funk, N., Chalvatzaki, G., Peters, J., & Tessmann, O. (2023). Auto(mated)nomous Assembly. In A. Gomes Correia, M. Azenha, P. J. S. Cruz, P. Novais, & P. Pereira (Eds.), Trends on Construction in the Digital Era (Vol. 306, pp. 167–181). Springer International Publishing. https://doi.org/10.1007/978-3-031-20241-4_12
Lutter, M., Belousov, B., Mannor, S., Fox, D., Garg, A., & Peters, J. (2022). Continuous-Time Fitted Value Iteration for Robust Policies. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–15. https://doi.org/10.1109/TPAMI.2022.3215769
Malathi, K., & Ruby, E. D. K. (2024). Evaluating Machine Learning Linear Regresion Model for DVT Prediction in Rehabilitation Patients. 2024 Ninth International Conference on Science Technology Engineering and Mathematics (ICONSTEM), 1–5. https://doi.org/10.1109/ICONSTEM60960.2024.10568850
Malathi, K., Ruby, E. D. K., Gangadharan, K., & Kumar M, R. (2024). Revolutionizing Deep Vein Thrombosis (DVT) Management: Machine Learning Unveils Precision in Early Detection. 2024 Ninth International Conference on Science Technology Engineering and Mathematics (ICONSTEM), 1–5. https://doi.org/10.1109/ICONSTEM60960.2024.10568667
Niggel, A. (2023). Transformer la formation des aides-soignants, un enjeu majeur pour l’avenir. L’Aide-Soignante, 37(252), 11–12. https://doi.org/10.1016/j.aidsoi.2023.10.004
Puschmann, J., Evers, D.-H., Müller-Goymann, C. C., & Herbig, M. E. (2019). Development of a design of experiments optimized method for quantification of polysorbate 80 based on oleic acid using UHPLC-MS. Journal of Chromatography A, 1599, 136–143. https://doi.org/10.1016/j.chroma.2019.04.015
Ramkumar, M., Malathi, K., & Pavithra, K. (2023). Optimizing Machine Learning Model Accuracy via OBNT Algorithm: Advanced Data Preprocessing Technique. 2023 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES), 1–6. https://doi.org/10.1109/ICSES60034.2023.10465344
Ratsch, B. E., Levine, D., & Wakshlag, J. J. (2022). Clinical Guide to Obesity and Nonherbal Nutraceuticals in Canine Orthopedic Conditions. Veterinary Clinics of North America: Small Animal Practice, 52(4), 939–958. https://doi.org/10.1016/j.cvsm.2022.03.002
Rithish, P., Muthiah, J., & Chidambaram, N. (2023). A Strange Model for Secure Medical Image Transaction—An Attractor Approach. 2023 International Conference on Computer Communication and Informatics (ICCCI), 1–4. https://doi.org/10.1109/ICCCI56745.2023.10128395
Rønberg, M. T. (2019). Living under a diagnostic description: Navigating images, metaphors, and sounds of depression. Subjectivity, 12(2), 171–191. https://doi.org/10.1057/s41286-019-00070-z
Stegeager, N., & Sørensen, P. (2021). Rethinking Transfer of Training: Continuing Education as Collaborative Practice. In B. Elkjaer, M. M. Lotz, & N. C. Mossfeldt Nickelsen (Eds.), Current Practices in Workplace and Organizational Learning (pp. 221–236). Springer International Publishing. https://doi.org/10.1007/978-3-030-85060-9_14
Urain, J., Li, A., Liu, P., D’Eramo, C., & Peters, J. (2023). Composable energy policies for reactive motion generation and reinforcement learning. The International Journal of Robotics Research, 42(10), 827–858. https://doi.org/10.1177/02783649231179499
Wood, J. (2024). Shifts in digital media usage before and after the pandemic by Rusyns in Ukraine. Linguistics Vanguard. https://doi.org/10.1515/lingvan-2023-0156
Copyright (c) 2024 Rizky Wardhani, Safiullah Aziz, Jamil Khan, Fitri Siswanty

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


















