Early Detection of Developmental Disorders Through Machine Learning Algorithm
Downloads
Machine learning algorithms have the ability to analyze huge amounts of data and discover patterns that may not be visible to humans. Machine learning offers new hope for faster, more accurate, and cheaper screening for early detection of developmental disorders. This research was conducted with the aim of developing an effective and efficient machine learning algorithm for analyzing child development data. Apart from that, it is also to identify the most relevant features and indicators for the detection of early developmental disorders. The method used by researchers in researching the Detection of Developmental Disorders through Machine Learning Algorithms is to use a quantitative method. The data obtained by researchers was obtained from the results of distributing questionnaires. The distribution of questionnaires carried out by researchers was carried out online using Google From software. The results of data acquisition will also be tested again using the SPSS application. From the research results, it can be seen that this research is expected to produce a model that is not only accurate, but can also be implemented in the wider health system to provide maximum benefits for society. And can improve children's health by enabling faster detection and intervention. Ultimately, this may improve long-term outcomes for children with developmental disorders. From this study, researchers can conclude that with advances in information technology, machine learning-based applications can be accessed via mobile devices and online platforms, allowing initial screening to be carried out easily by parents and educators, even before consulting a medical professional. In recent years, machine learning (ML) technology has shown that it has enormous potential for application in various fields, including health and medical care.
Ahn, Y., Choi, H., & Kim, B. S. (2023). Development of early fire detection model for buildings using computer vision-based CCTV. Journal of Building Engineering, 65, 105647. https://doi.org/10.1016/j.jobe.2022.105647
Ahneman, D. T., Estrada, J. G., Lin, S., Dreher, S. D., & Doyle, A. G. (2018). Predicting reaction performance in C–N cross-coupling using machine learning. Science, 360(6385), 186–190. https://doi.org/10.1126/science.aar5169
Biggio, B., & Roli, F. (2018). Wild patterns: Ten years after the rise of adversarial machine learning. Pattern Recognition, 84, 317–331. https://doi.org/10.1016/j.patcog.2018.07.023
Brasier, N., Raichle, C. J., Dörr, M., Becke, A., Nohturfft, V., Weber, S., Bulacher, F., Salomon, L., Noah, T., Birkemeyer, R., & Eckstein, J. (2019). Detection of atrial fibrillation with a smartphone camera: First prospective, international, two-centre, clinical validation study (DETECT AF PRO). EP Europace, 21(1), 41–47. https://doi.org/10.1093/europace/euy176
Busienei, P., Ogendi, G., & Mokua, M. (2019). Latrine Structure, Design, and Conditions, and the Practice of Open Defecation in Lodwar Town, Turkana County, Kenya: A Quantitative Methods Research. Environmental Health Insights, 13, 117863021988796. https://doi.org/10.1177/1178630219887960
Chemali, E., Kollmeyer, P. J., Preindl, M., & Emadi, A. (2018). State-of-charge estimation of Li-ion batteries using deep neural networks: A machine learning approach. Journal of Power Sources, 400, 242–255. https://doi.org/10.1016/j.jpowsour.2018.06.104
Chen, C., Ye, W., Zuo, Y., Zheng, C., & Ong, S. P. (2019). Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals. Chemistry of Materials, 31(9), 3564–3572. https://doi.org/10.1021/acs.chemmater.9b01294
Da Costa, K. A. P., Papa, J. P., Lisboa, C. O., Munoz, R., & De Albuquerque, V. H. C. (2019). Internet of Things: A survey on machine learning-based intrusion detection approaches. Computer Networks, 151, 147–157. https://doi.org/10.1016/j.comnet.2019.01.023
Diez-Olivan, A., Del Ser, J., Galar, D., & Sierra, B. (2019). Data fusion and machine learning for industrial prognosis: Trends and perspectives towards Industry 4.0. Information Fusion, 50, 92–111. https://doi.org/10.1016/j.inffus.2018.10.005
Dong, X., & Cheng, S. (2023). A machine vision–based, quantitative method of capturing spatiotemporal activity for post-occupancy evaluation research. Science and Technology for the Built Environment, 29(2), 185–211. https://doi.org/10.1080/23744731.2022.2151272
Du, M., Liu, N., & Hu, X. (2019). Techniques for interpretable machine learning. Communications of the ACM, 63(1), 68–77. https://doi.org/10.1145/3359786
Dutta, K., De, S., Das, B., Bera, S., Guria, B., Ali, M. S., & Chattopadhyay, D. (2021). Development of an Efficient Immunosensing Platform by Exploring Single-Walled Carbon Nanohorns (SWCNHs) and Nitrogen Doped Graphene Quantum Dot (N-GQD) Nanocomposite for Early Detection of Cancer Biomarker. ACS Biomaterials Science & Engineering, 7(12), 5541–5554. https://doi.org/10.1021/acsbiomaterials.1c00753
Elmortada, A., Mokhlis, C. E., Mokhlis, A., & Elfezazi, S. (2019). Assessement of managers satisfaction regarding the HR Function in developing countries through a quantitative method research: The Moroccan context. Periodicals of Engineering and Natural Sciences (PEN), 7(2), 924. https://doi.org/10.21533/pen.v6i2.588
Eteng-Uket, S. (2023). The Development, Validation, and Standardization of a New Tool: The Dyscalculia Test. Numeracy, 16(2). https://doi.org/10.5038/1936-4660.16.2.1417
Flah, M., Nunez, I., Ben Chaabene, W., & Nehdi, M. L. (2021). Machine Learning Algorithms in Civil Structural Health Monitoring: A Systematic Review. Archives of Computational Methods in Engineering, 28(4), 2621–2643. https://doi.org/10.1007/s11831-020-09471-9
Froehlich, D. E., Van Waes, S., & Schäfer, H. (2020). Linking Quantitative and Qualitative Network Approaches: A Review of Mixed Methods Social Network Analysis in Education Research. Review of Research in Education, 44(1), 244–268. https://doi.org/10.3102/0091732X20903311
Fuchs, J., Nonn, O., Daxboeck, C., Groiss, S., Moser, G., Gauster, M., Lang-Olip, I., & Brislinger, D. (2021). Automated Quantitative Image Evaluation of Antigen Retrieval Methods for 17 Antibodies in Placentation and Implantation Diagnostic and Research. Microscopy and Microanalysis, 27(6), 1506–1517. https://doi.org/10.1017/S1431927621012630
Fukami, K., Fukagata, K., & Taira, K. (2019). Super-resolution reconstruction of turbulent flows with machine learning. Journal of Fluid Mechanics, 870, 106–120. https://doi.org/10.1017/jfm.2019.238
Haasnoot, M., Van ’T Klooster, S., & Van Alphen, J. (2018). Designing a monitoring system to detect signals to adapt to uncertain climate change. Global Environmental Change, 52, 273–285. https://doi.org/10.1016/j.gloenvcha.2018.08.003
Heinzen, E. P., Wilson, P. M., Storlie, C. B., Demuth, G. O., Asai, S. W., Schaeferle, G. M., Bartley, M. M., & Havyer, R. D. (2023). Impact of a machine learning algorithm on time to palliative care in a primary care population: Protocol for a stepped-wedge pragmatic randomized trial. BMC Palliative Care, 22(1), 9. https://doi.org/10.1186/s12904-022-01113-0
House, J. (2018). Authentic vs elicited data and qualitative vs quantitative research methods in pragmatics: Overcoming two non-fruitful dichotomies. System, 75, 4–12. https://doi.org/10.1016/j.system.2018.03.014
Huang, L., Fu, Q., He, M., Jiang, D., & Hao, Z. (2021). Detection algorithm of safety helmet wearing based on deep learning. Concurrency and Computation: Practice and Experience, 33(13), e6234. https://doi.org/10.1002/cpe.6234
Jones, S. K., Davies-Thompson, J., & Tree, J. (2021). Can Machines Find the Bilingual Advantage? Machine Learning Algorithms Find No Evidence to Differentiate Between Lifelong Bilingual and Monolingual Cognitive Profiles. Frontiers in Human Neuroscience, 15, 621772. https://doi.org/10.3389/fnhum.2021.621772
Kouki, Y., Müller, S., Schuchardt, T., & Dilger, K. (2020). Development of an Instrumented Test Tool for the Determination of Heat Transfer Coefficients for Die Casting Applications. Metals, 10(9), 1206. https://doi.org/10.3390/met10091206
Lee, K., Lam, M., Pedarsani, R., Papailiopoulos, D., & Ramchandran, K. (2018). Speeding Up Distributed Machine Learning Using Codes. IEEE Transactions on Information Theory, 64(3), 1514–1529. https://doi.org/10.1109/TIT.2017.2736066
Levis, B., Benedetti, A., & Thombs, B. D. (2019). Accuracy of Patient Health Questionnaire-9 (PHQ-9) for screening to detect major depression: Individual participant data meta-analysis. BMJ, l1476. https://doi.org/10.1136/bmj.l1476
Li, J., Sun, L., Yan, Q., Li, Z., Srisa-an, W., & Ye, H. (2018). Significant Permission Identification for Machine-Learning-Based Android Malware Detection. IEEE Transactions on Industrial Informatics, 14(7), 3216–3225. https://doi.org/10.1109/TII.2017.2789219
Liu, H., Li, L., Wormstone, I. M., Qiao, C., Zhang, C., Liu, P., Li, S., Wang, H., Mou, D., Pang, R., Yang, D., Zangwill, L. M., Moghimi, S., Hou, H., Bowd, C., Jiang, L., Chen, Y., Hu, M., Xu, Y., … Wang, N. (2019). Development and Validation of a Deep Learning System to Detect Glaucomatous Optic Neuropathy Using Fundus Photographs. JAMA Ophthalmology, 137(12), 1353. https://doi.org/10.1001/jamaophthalmol.2019.3501
Lu, Q., Wang, J., Li, B., Weng, C., Li, X., Yang, W., Yan, X., Hong, J., Zhu, W., & Zhou, X. (2020). Dual-Emission Reverse Change Ratio Photoluminescence Sensor Based on a Probe of Nitrogen-Doped Ti 3 C 2 Quantum Dots@DAP to Detect H 2 O 2 and Xanthine. Analytical Chemistry, 92(11), 7770–7777. https://doi.org/10.1021/acs.analchem.0c00895
Matovi?, N., & Ovesni, K. (2023). Interaction of quantitative and qualitative methodology in mixed methods research: Integration and/or combination. International Journal of Social Research Methodology, 26(1), 51–65. https://doi.org/10.1080/13645579.2021.1964857
Milea, D., Najjar, R. P., Jiang, Z., Ting, D., Vasseneix, C., Xu, X., Aghsaei Fard, M., Fonseca, P., Vanikieti, K., Lagrèze, W. A., La Morgia, C., Cheung, C. Y., Hamann, S., Chiquet, C., Sanda, N., Yang, H., Mejico, L. J., Rougier, M.-B., Kho, R., … Biousse, V. (2020). Artificial Intelligence to Detect Papilledema from Ocular Fundus Photographs. New England Journal of Medicine, 382(18), 1687–1695. https://doi.org/10.1056/NEJMoa1917130
Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R., & Yu, B. (2019). Definitions, methods, and applications in interpretable machine learning. Proceedings of the National Academy of Sciences, 116(44), 22071–22080. https://doi.org/10.1073/pnas.1900654116
Musumeci, F., Rottondi, C., Nag, A., Macaluso, I., Zibar, D., Ruffini, M., & Tornatore, M. (2019). An Overview on Application of Machine Learning Techniques in Optical Networks. IEEE Communications Surveys & Tutorials, 21(2), 1383–1408. https://doi.org/10.1109/COMST.2018.2880039
Quintanilla-Villanueva, G. E., Maldonado, J., Luna-Moreno, D., Rodríguez-Delgado, J. M., Villarreal-Chiu, J. F., & Rodríguez-Delgado, M. M. (2023). Progress in Plasmonic Sensors as Monitoring Tools for Aquaculture Quality Control. Biosensors, 13(1), 90. https://doi.org/10.3390/bios13010090
Roscher, R., Bohn, B., Duarte, M. F., & Garcke, J. (2020). Explainable Machine Learning for Scientific Insights and Discoveries. IEEE Access, 8, 42200–42216. https://doi.org/10.1109/ACCESS.2020.2976199
Sansavini, A., Favilla, M. E., Guasti, M. T., Marini, A., Millepiedi, S., Di Martino, M. V., Vecchi, S., Battajon, N., Bertolo, L., Capirci, O., Carretti, B., Colatei, M. P., Frioni, C., Marotta, L., Massa, S., Michelazzo, L., Pecini, C., Piazzalunga, S., Pieretti, M., … Lorusso, M. L. (2021). Developmental Language Disorder: Early Predictors, Age for the Diagnosis, and Diagnostic Tools. A Scoping Review. Brain Sciences, 11(5), 654. https://doi.org/10.3390/brainsci11050654
Santos, R., Souza, D., Santo, W., Ribeiro, A., & Moreno, E. (2020). Machine learning algorithms to detect DDoS attacks in SDN. Concurrency and Computation: Practice and Experience, 32(16), e5402. https://doi.org/10.1002/cpe.5402
Sarker, I. H. (2021). Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science, 2(3), 160. https://doi.org/10.1007/s42979-021-00592-x
Schuld, M., & Killoran, N. (2019). Quantum Machine Learning in Feature Hilbert Spaces. Physical Review Letters, 122(4), 040504. https://doi.org/10.1103/PhysRevLett.122.040504
Syam, N., & Sharma, A. (2018). Waiting for a sales renaissance in the fourth industrial revolution: Machine learning and artificial intelligence in sales research and practice. Industrial Marketing Management, 69, 135–146. https://doi.org/10.1016/j.indmarman.2017.12.019
T.K., B., Annavarapu, C. S. R., & Bablani, A. (2021). Machine learning algorithms for social media analysis: A survey. Computer Science Review, 40, 100395. https://doi.org/10.1016/j.cosrev.2021.100395
Vabalas, A., Gowen, E., Poliakoff, E., & Casson, A. J. (2019). Machine learning algorithm validation with a limited sample size. PLOS ONE, 14(11), e0224365. https://doi.org/10.1371/journal.pone.0224365
Van Den Veyver, I. B. (2019). Prenatally diagnosed developmental abnormalities of the central nervous system and genetic syndromes: A practical review. Prenatal Diagnosis, 39(9), 666–678. https://doi.org/10.1002/pd.5520
Wen, C., Zhang, Y., Wang, C., Xue, D., Bai, Y., Antonov, S., Dai, L., Lookman, T., & Su, Y. (2019). Machine learning assisted design of high entropy alloys with desired property. Acta Materialia, 170, 109–117. https://doi.org/10.1016/j.actamat.2019.03.010
Wu, J.-L., Xiao, H., & Paterson, E. (2018). Physics-informed machine learning approach for augmenting turbulence models: A comprehensive framework. Physical Review Fluids, 3(7), 074602. https://doi.org/10.1103/PhysRevFluids.3.074602
Zaynagalina, L. Z. (2020). On the development of an experimental design and field test of an upper bit tool. IOP Conference Series: Materials Science and Engineering, 905(1), 012093. https://doi.org/10.1088/1757-899X/905/1/012093
Zhang, J., Yin, Z., Chen, P., & Nichele, S. (2020). Emotion recognition using multi-modal data and machine learning techniques: A tutorial and review. Information Fusion, 59, 103–126. https://doi.org/10.1016/j.inffus.2020.01.011
Zhang, W., Li, H., Li, Y., Liu, H., Chen, Y., & Ding, X. (2021). Application of deep learning algorithms in geotechnical engineering: A short critical review. Artificial Intelligence Review, 54(8), 5633–5673. https://doi.org/10.1007/s10462-021-09967-1
Zhao, Z., Li, C., Zhang, X., Chiclana, F., & Viedma, E. H. (2019). An incremental method to detect communities in dynamic evolving social networks. Knowledge-Based Systems, 163, 404–415. https://doi.org/10.1016/j.knosys.2018.09.002
Zhou, C., Wu, W., He, H., Yang, P., Lyu, F., Cheng, N., & Shen, X. (2021). Deep Reinforcement Learning for Delay-Oriented IoT Task Scheduling in SAGIN. IEEE Transactions on Wireless Communications, 20(2), 911–925. https://doi.org/10.1109/TWC.2020.3029143
Copyright (c) 2024 Loso Judijanto, Guijiao Zou, Benny Novico Zani, Efendi Efendi, Lie Jie

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


















