AI-BASED ADAPTIVE LEARNING MODELS: THEIR INFLUENCE ON LEARNING PERSONALIZATION AND STUDENT AUTONOMY
Downloads
AI-Based Adaptive Learning Systems (ALS) promise personalized education but risk creating “algorithmic paternalism.” A critical, unexamined tension exists between system-driven optimization—which often removes learner choice—and the development of student autonomy and metacognitive skills essential for lifelong learning. This study empirically investigates this trade-off. We aimed to compare the influence of two distinct AI design philosophies—a “prescriptive” high-control model (Group A) and a “balanced” advisory model (Group B)—on both academic performance and measured student autonomy. A 15-week, mixed-methods, quasi-experiment was conducted with 284 undergraduates. Participants were assigned to the prescriptive (n=95), advisory (n=98), or a non-adaptive control (n=91) group. Autonomy was measured using the Academic Self-Regulation Questionnaire (SRQ-A) in a pre-test/post-test design. The prescriptive model (Group A) yielded the highest exam scores (87.4%), marginally outperforming the advisory model (85.9%). However, this came at a significant cost: Group A showed a statistically significant decrease in autonomy (-0.42 SRQ-A), whereas the advisory Group B showed a significant increase (+0.85 SRQ-A). The findings confirm a measurable trade-off between optimization and autonomy. Prescriptive AI poses a tangible risk to self-regulatory skill development. An advisory, “metacognitive scaffold” model represents a superior pedagogical paradigm for balancing high academic performance with the critical goal of fostering student autonomy.
Abram, N. (2025). Personalized Learning in Action: Exploring AI and Robotics for Early Childhood Education. Dalam T. Walsh, J. Shah, & Z. Kolter (Ed.), Proc. AAAI Conf. Artif. Intell. (Vol. 39, Nomor 28, hlm. 29561–29563). Association for the Advancement of Artificial Intelligence; Scopus. https://doi.org/10.1609/aaai.v39i28.35325
Alshamrani, G., & Cristea, A. I. (2025). From One-Size-Fits-All to Personalisation: Transforming Gamified Learning Through Localisation and Multidimensionality in the Arab Culture. Dalam A. I. Cristea, E. Walker, Y. Lu, O. C. Santos, & S. Isotani (Ed.), Commun. Comput. Info. Sci.: Vol. 2590 CCIS (hlm. 476–481). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-99261-2_56
Alves, C., Machado, J., & Reis, J. L. (2025). Impacts of Augmented Reality in E-commerce: Advances and Trends in 2024—A Literature Review. Dalam J. L. Reis, J. P. M. Santos, L. M. Gomes, & Z. Bogdanovic (Ed.), Smart Innov. Syst. Technol.: Vol. 438 SIST (hlm. 931–943). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-981-96-3077-6_58
Balushi, N. S. Z. A. (2024). Developing Innovative AI-Based Educational Guidance Systems to Meet the Needs of Each Student Individually: A Comprehensive Review. Int. Conf. Comput. Data Anal., ICCDA - Proc. Scopus. https://doi.org/10.1109/ICCDA64887.2024.10867396
Baruah, A., Kaur, A., Venugopal, P. R., Raghunandan, S., Sreedevi, C., & Atrayan, L. (2024). Deep Learning Enabled Parent Involvement and Its Influence on Student Academic Achievement Analysis. Proc. Int. Conf. Sci., Technol., Eng. Math.: Role Emerg. Technol. Digit. Transform., ICONSTEM. Scopus. https://doi.org/10.1109/ICONSTEM60960.2024.10568816
Bauer, E., Heitzmann, N., Bannert, M., Chernikova, O., Fischer, M. R., Frenzel, A. C., Gartmeier, M., Hofer, S. I., Holzberger, D., Kasneci, E., Koenen, J., Kosel, C., Küchemann, S., Kuhn, J., Michaeli, T., Neuhaus, B. J., Niklas, F., Obersteiner, A., Pfeffer, J., … Fischer, F. (2025). Personalizing simulation-based learning in higher education. Learning and Individual Differences, 122. Scopus. https://doi.org/10.1016/j.lindif.2025.102746
Chen, F., Zhang, Y., Nguyen, M., Klenk, M., & Wu, C. (2024). Personalized choice prediction with less user information. Annals of Mathematics and Artificial Intelligence, 92(6), 1489–1509. Scopus. https://doi.org/10.1007/s10472-024-09927-9
Cheng, Y.-M. (2025). How to animate learners to persist in learning massive open online courses? An application of the stimulus-organism-response paradigm. Information Discovery and Delivery, 53(1), 124–143. Scopus. https://doi.org/10.1108/IDD-11-2023-0130
Daiu, S., Qosja, A., & Ali, M. (2026). Integrating Artificial Intelligence in English Language Classrooms: Enhancing English for Specific Purposes Education. Dalam M. H. Miraz, M. H. Miraz, A. Ware, G. Southall, & M. Ali (Ed.), Lect. Notes Inst. Comput. Sci. Soc. Informatics Telecommun. Eng.: Vol. 623 LNICST (hlm. 161–183). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-92625-9_11
Delgado, I., Mogollón, N., Castillo, F., Acosta, D., Olivera, R., & Cruzalegui, R. (2025). Current Online Learning Trends for Professionals and Entrepreneurs in Business. CLEI Eletronic Journal (CLEIej), 28(4). Scopus. https://doi.org/10.19153/cleiej.28.4.3
Dennis, M., & Harmon-Kizer, T. H. (2025). Lights, camera, engagement! The role of personalized video as a marketing strategy in capturing consumer attention. Journal of Marketing Communications. Scopus. https://doi.org/10.1080/13527266.2025.2478571
Fan, Y. (2025). Wearable-Based Personalized Exercise Heart Rate Estimation and Distribution Analysis Using Dual-Context LSTM Model. Internet Technology Letters, 8(5). Scopus. https://doi.org/10.1002/itl2.627
Ferdinan, T., & Koco?, J. (2025). Fortifying NLP models against poisoning attacks: The power of personalized prediction architectures. Information Fusion, 114. Scopus. https://doi.org/10.1016/j.inffus.2024.102692
Han, L., Xu, C., Xiao, M., Lv, Q., Wang, L., Liu, Z., Gao, F., Dang, Y., & Jou, M. (2026). Psychological insights into enhanced online learning: Investigating the role of Danmaku interaction and cognitive styles. Computers in Human Behavior, 174. Scopus. https://doi.org/10.1016/j.chb.2025.108802
Jo, H., & Park, D.-H. (2025). The fear of being replaced by generative AI: An examination of influential factors among office workers. Technological Forecasting and Social Change, 220. Scopus. https://doi.org/10.1016/j.techfore.2025.124326
Joshi, S., Bhattacharya, S., Pathak, P., Natraj, N. A., Saini, J., & Goswami, S. (2025). Harnessing the potential of generative AI in digital marketing using the Behavioral Reasoning Theory approach. International Journal of Information Management Data Insights, 5(1). Scopus. https://doi.org/10.1016/j.jjimei.2024.100317
Kalyane, P., Damania, J., Patil, H., Wardule, M., & Shahane, P. (2024). Student’s Performance Prediction Using Decision Tree Regressor. Dalam A. Verma, P. Verma, K. K. Pattanaik, S. K. Dhurandher, & I. Woungang (Ed.), Commun. Comput. Info. Sci.: Vol. 2092 CCIS (hlm. 286–302). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-64070-4_18
Khalkho, R., Singh, S., Gupta, N., & Srivastava, P. (2024). Impact of Educational AI on Students’ Studying Habits and Academic Performance. Int. Conf. Artif. Intell. Quantum Comput.-Based Sens. Appl., ICAIQSA - Proc. Scopus. https://doi.org/10.1109/ICAIQSA64000.2024.10882178
Li, X., Zhang, M., Tavares, A. J., Xu, H., & Ma, S. (2025). Personalized vehicle trajectory prediction method based on driving style classification. Scientific Reports, 15(1). Scopus. https://doi.org/10.1038/s41598-025-17088-w
Li, Y., Liang, J., & Zhao, Y. (2025). Research on the Use of Neural Networks for Cultivating High-Achieving Talent in the Transition Path from Secondary School to University. Proc. Int. Conf. Informatics Educ. Comput. Technol. Appl., IECA, 12–16. Scopus. https://doi.org/10.1145/3732801.3732804
Lindhaus, M., Ehlert, M., & Dutke, S. (2025). Personalizing text by using readers’ names – effects on reading comprehension and social agency. European Journal of Psychology of Education, 40(3). Scopus. https://doi.org/10.1007/s10212-025-00991-1
Liubchenko, V., Komleva, N., & Zinovatna, S. (2025). Task Design and Assessment Strategies for AI-Influenced Education. Dalam L. David, Y. Kondratenko, V. Vychuzhanin, H. Yin, & N. Rudnichenko (Ed.), CEUR Workshop Proc. (Vol. 4048, hlm. 16–29). CEUR-WS; Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-105018669087&partnerID=40&md5=24ba2fa177edd6f194f6afc8bd532a79
Lu, Y., Wang, D., & Wu, J. (2024). What is the AIGC-assisted learning experience like? - A study based on conceptual understanding. ACM Int. Conf. Proc. Ser., 512–518. Scopus. https://doi.org/10.1145/3687311.3687403
Melsky, K., Stuopis, I., Wendell, K., & Kemmerling, E. C. (2024). Personalized problems and student discourse in thermal fluid transport courses. International Journal of Mechanical Engineering Education, 52(4), 457–478. Scopus. https://doi.org/10.1177/03064190231195609
Mollay, M. H., Sharma, D., Anawade, P., Rafique, A. A. A., & Akpabio, E. (2026). Trust in Artificial Intelligence Marketing: How AI-Powered Chatbots and Algorithms Influence Consumer Trust in Automated Systems. Dalam U. P. Rao, I. de la Torre Díez, A. Visconti, & P. R. Chelliah (Ed.), Lect. Notes Electr. Eng.: Vol. 1444 LNEE (hlm. 365–382). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-981-96-8283-6_24
Norabuena-Figueroa, R. P., Deroncele-Acosta, A., Rodriguez-Orellana, H. M., Norabuena-Figueroa, E. D., Flores-Chinte, M. C., Huamán-Romero, L. L., Tarazona-Miranda, V. H., & Mollo Flores, M. E. (2025). Digital Teaching Practices and Student Academic Stress in the Era of Digitalization in Higher Education. Applied Sciences (Switzerland), 15(3). Scopus. https://doi.org/10.3390/app15031487
Orji, F. A., Gutierrez, F. J., & Vassileva, J. (2025). Motivation profiles: Understanding interplay of persuasive strategies and self-determination theory. Behaviour and Information Technology. Scopus. https://doi.org/10.1080/0144929X.2025.2522200
Oubagine, R., Laaouina, L., Jeghal, A., & Tairi, H. (2025). Smart Adaptive Learning Systems in Education: Current State and Future Perspectives. Dalam M. El Ghzaoui & B. Aghoutane (Ed.), Int. Conf. Circuit, Syst. Commun., ICCSC. Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/ICCSC66714.2025.11135254
Pelánek, R. (2024). Leveraging response times in learning environments: Opportunities and challenges. User Modeling and User-Adapted Interaction, 34(3), 729–752. Scopus. https://doi.org/10.1007/s11257-023-09386-7
Pesovski, I., Jolakoski, P., Trajkovik, V., Kubincová, Z., & Herzog, M. A. (2025). Predicting student achievement through peer network analysis for timely personalization via generative AI. Computers and Education: Artificial Intelligence, 8. Scopus. https://doi.org/10.1016/j.caeai.2025.100430
Pillai, R., Sivathanu, B., Metri, B., & Kaushik, N. (2024). Students’ adoption of AI-based teacher-bots (T-bots) for learning in higher education. Information Technology and People, 37(1), 328–355. Scopus. https://doi.org/10.1108/ITP-02-2021-0152
Rodrigues, L., Pereira Junior, C. X., Queiroga, E. M., Santos, H. F. S., & Costa, N. T. (2024). The Influence of Aesthetic Personalization on Gamified Learning: A Behavioral Analysis of Students’ Interactions. Dalam A. M. Olney, I.-A. Chounta, Z. Liu, O. C. Santos, & I. I. Bittencourt (Ed.), Commun. Comput. Info. Sci.: Vol. 2151 CCIS (hlm. 283–290). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-64312-5_34
Saqr, M., & López-Pernas, S. (2024). Mapping the self in self-regulation using complex dynamic systems approach. British Journal of Educational Technology, 55(4), 1376–1397. Scopus. https://doi.org/10.1111/bjet.13452
Sengar, A. S., Bahadure, N. B., Mishra, A. K., Chaudhari, V., Pandey, N. K., & Dumka, A. (2024). The Role of Machine Learning in Equipping Students with Emerging Opportunities. Int. Conf. Smart Devices, ICSD. Scopus. https://doi.org/10.1109/ICSD60021.2024.10751239
Sharmin, M., Archer, J., Heffelman, A., Graves, E., Elglaly, Y. N., & Ahmed, S. (2024). Towards Understanding the Challenges, Needs, and Opportunities Pertaining to Assessment Techniques for Autistic College Students in Computing. Dalam H. Shahriar, H. Ohsaki, M. Sharmin, D. Towey, AKM. J. A. Majumder, Y. Hori, J.-J. Yang, M. Takemoto, N. Sakib, R. Banno, & S. I. Ahamed (Ed.), Proc. - IEEE Annu. Comput., Softw., Appl. Conf., COMPSAC (hlm. 887–893). Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/COMPSAC61105.2024.00122
Verdesoto, G. J., & Caicedo, M. F. (2025). The Importance of Microlearning in Higher Education. European Public and Social Innovation Review, 10, 1–14. Scopus. https://doi.org/10.31637/epsir-2025-2075
Xiao, Y., & Hew, K. F. (2024). Personalized gamification versus one-size-fits-all gamification in fully online learning: Effects on student motivational, behavioral and cognitive outcomes. Learning and Individual Differences, 113. Scopus. https://doi.org/10.1016/j.lindif.2024.102470
Zhu, J., Ma, X., & Huang, C. (2024). Stable Knowledge Tracing Using Causal Inference. IEEE Transactions on Learning Technologies, 17, 124–134. Scopus. https://doi.org/10.1109/TLT.2023.3264772
Copyright (c) 2025 Eva Astuti Mulyani, Neni Hermita, Mahdum, Charlina

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


















