THE ASSESSMENT REVOLUTION: THEORIES AND METHODOLOGIES OF AUTOMATED ASSESSMENT USING MACHINE LEARNING FOR EVALUATING LEARNING PROGRESS
Downloads
Rapid advances in artificial intelligence and machine learning have fundamentally transformed educational assessment practices, shifting evaluation from episodic, human-centered measurement toward continuous, data-driven monitoring of learning progress. This study aims to examine the theoretical foundations and methodological approaches underlying automated assessment systems that employ machine learning to evaluate learning progress in diverse educational contexts. A qualitative systematic review with an integrative analytical framework was employed, drawing on peer-reviewed studies from international journals across education, learning analytics, and computer science. The selected literature was analyzed to identify dominant assessment purposes, theoretical alignments, data sources, modeling techniques, and validation strategies. The results indicate that most automated assessment systems prioritize predictive accuracy and efficiency, frequently conceptualizing learning progress through performance-oriented metrics while offering limited alignment with established assessment theories such as formative assessment and construct validity. Theory-informed and interpretable models remain underrepresented despite their pedagogical relevance. The findings reveal a persistent gap between technological innovation and educational meaning-making in automated assessment research. This study concludes that the assessment revolution driven by machine learning will remain incomplete without stronger integration of educational assessment theory, methodological transparency, and interpretability. Aligning machine learning methodologies with robust assessment principles is essential to ensure that automated systems support meaningful evaluation of learning progress, instructional decision-making, and educational equity.
Alampara, N., Schilling-Wilhelmi, M., & Jablonka, K. M. (2025). Lessons from the trenches on evaluating machine learning systems in materials science. Computational Materials Science, 259. Scopus. https://doi.org/10.1016/j.commatsci.2025.114041
Alfarhood, M., Alahmad, A., Alalwan, A., & Alkulaib, F. (2025). Leveraging Satellite Imagery and Machine Learning for Urban Green Space Assessment: A Case Study from Riyadh City. Sustainability (Switzerland), 17(13). Scopus. https://doi.org/10.3390/su17136118
Beltran-Velamazan, C., Monzón-Chavarrías, M., & López-Mesa, B. (2025). Predicting Energy and Emissions in Residential Building Stocks: National UBEM with Energy Performance Certificates and Artificial Intelligence. Applied Sciences (Switzerland), 15(2). Scopus. https://doi.org/10.3390/app15020514
Berezsky, O., Kovalchuk, O., Berezka, K., & Ivanytskyy, R. (2025). Assessing smart cities’ effectiveness: Machine learning approaches. Frontiers in Sustainable Cities, 7. Scopus. https://doi.org/10.3389/frsc.2025.1400917
Brown, N. C. C., Weill-Tessier, P., Leinonen, J., Denny, P., & Kölling, M. (2025). Howzat? Appealing to Expert Judgement for Evaluating Human and AI Next-Step Hints for Novice Programmers. ACM Transactions on Computing Education, 25(3). Scopus. https://doi.org/10.1145/3737885
Chittenden, H. G., Behera, J., & Tojeiro, R. (2025). Evaluating the galaxy formation histories predicted by a neural network in pure dark matter simulations. Monthly Notices of the Royal Astronomical Society, 541(2), 1682–1705. Scopus. https://doi.org/10.1093/mnras/staf1086
Colacci, M., Huang, Y. Q., Postill, G., Zhelnov, P., Fennelly, O., Verma, A., Straus, S., & Tricco, A. C. (2025). Sociodemographic bias in clinical machine learning models: A scoping review of algorithmic bias instances and mechanisms. Journal of Clinical Epidemiology, 178. Scopus. https://doi.org/10.1016/j.jclinepi.2024.111606
Cui, T., Zhou, Y., & Wang, T. (2025). Recent advances in artificial intelligence–driven biomolecular dynamics simulations based on machine learning force fields. Current Opinion in Structural Biology, 95. Scopus. https://doi.org/10.1016/j.sbi.2025.103191
Elamin, M. O. I. (2026). AI-Powered Mixed Reality for Reviving Al-Khwarizmi’s Heritage in Inclusive Education: A Digital Twin Approach. In L. T. De Paolis, P. Arpaia, & M. Sacco (Eds.), Lect. Notes Comput. Sci.: Vol. 15741 LNCS (pp. 547–558). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-97775-6_34
Fahim-Ul-Islam, M., Chakrabarty, A., Hasan, M., Efaz, A. H., Wang, X., & Jalil Piran, M. J. (2025). Optimizing Patient Feedback with Generative Adversarial Network Leveraging Knowledge Distillation to Improve Healthcare. IEEE Journal of Biomedical and Health Informatics. Scopus. https://doi.org/10.1109/JBHI.2025.3584240
Feng, J. (2025). Research on Innovative Modes of College English Teaching Based on Data Mining and Intelligent CAI. International Journal of High Speed Electronics and Systems, 34(3). Scopus. https://doi.org/10.1142/S0129156424401141
Georgopoulou, M. S., Troussas, C., Krouska, A., & Sgouropoulou, C. (2025). Digital Literacy in Higher Education: Examining University Students’ Competence in Online Information Practices. Computers, 14(12). Scopus. https://doi.org/10.3390/computers14120528
Götz, G., Gert Nielsen, D., Guðjónsson, S., & Pind, F. (2025). Room-Acoustic Simulations as an Alternative to Measurements for Audio-Algorithm Evaluation. IEEE Access, 13, 214000–214008. Scopus. https://doi.org/10.1109/ACCESS.2025.3637534
Gutiérrez-Avilés, D., Jiménez-Navarro, M. J., Torres, J. F., & Martínez–Álvarez, F. (2025). MetaGen: A framework for metaheuristic development and hyperparameter optimization in machine and deep learning. Neurocomputing, 637. Scopus. https://doi.org/10.1016/j.neucom.2025.130046
Heidari, P., Khani, G. M., Fatahi, F., Rouhbakhsh, N., & Heidari, S. (2025). Designing, Implementing and Evaluating the Training Sessions of the Reading Club for Undergraduate Students in Audiology. Research in Medical Education, 17(1), 47–54. Scopus. https://doi.org/10.32592/rmegums.17.1.47
Hernández López, J. A. H., Cuadrado, J. S., Rubei, R., & Di Ruscio, D. (2025). ModelXGlue: A benchmarking framework for ML tools in MDE. Software and Systems Modeling, 24(4), 1035–1058. Scopus. https://doi.org/10.1007/s10270-024-01183-z
Kemavuthanon, K., & Aunsri, N. (2025). Development of Application to Improve Knowledge and Comprehension of Programming for Learners in Remote Areas: A Case Study of Schools in Thailand. IEEE Access, 13, 96236–96250. Scopus. https://doi.org/10.1109/ACCESS.2025.3574973
Li, T., Zheng, X., Liu, X., Zhang, H., Grieneisen, M. L., He, C., Ji, M., Zhan, Y., & Yang, F. (2025). Enhancing Space-Based Tracking of Fossil Fuel CO2 Emissions via Synergistic Integration of OCO-2, OCO-3, and TROPOMI Measurements. Environmental Science and Technology, 59(3), 1587–1597. Scopus. https://doi.org/10.1021/acs.est.4c05896
Lonsdale, H., Burns, M. L., Epstein, R. H., Hofer, I. S., Tighe, P. J., Gálvez Delgado, J. A., Kor, D. J., MacKay, E. J., Rashidi, P., Wanderer, J. P., & McCormick, P. J. (2025). Strengthening Discovery and Application of Artificial Intelligence in Anesthesiology: A Report from the Anesthesia Research Council. Anesthesiology, 142(4), 599–610. Scopus. https://doi.org/10.1097/ALN.0000000000005326
Montgomery, A. E., & Rana, A. (2025). Current state of artificial intelligence in liver transplantation. Transplantation Reports, 10(2). Scopus. https://doi.org/10.1016/j.tpr.2025.100173
Natarajan, M., Singh, K. D., Geddes, C. M., Shirtliffe, S. J., Ravichandran, P., & Wang, H. (2025). UAV-based hyperspectral imaging to evaluate plant moisture and desiccant response in lentil (Lens culinaris). Canadian Journal of Plant Science, 105. Scopus. https://doi.org/10.1139/cjps-2025-0084
Salehi, A., Alimohammadi, M., Khedmati, M., & Ghousi, R. (2025). Spatial-temporal dynamics in country-level sustainable energy performance using ensemble learning and Analytic hierarchy process. Journal of Cleaner Production, 508. Scopus. https://doi.org/10.1016/j.jclepro.2025.145497
Shim, J. V., Rehberg, M., Wagenhuber, B., van der Graaf, P. H., & Chung, D. W. (2025). Combining mechanistic modeling with machine learning as a strategy to predict inflammatory bowel disease clinical scores. Frontiers in Pharmacology, 16. Scopus. https://doi.org/10.3389/fphar.2025.1479666
Silva, T. H., & Silver, D. (2025). Using graph neural networks to predict local culture. Environment and Planning B: Urban Analytics and City Science, 52(2), 355–376. Scopus. https://doi.org/10.1177/23998083241262053
Smetana, S., Coudron, C., Deruytter, D., Francis, A., Pascual, J. J., Klammsteiner, T., Lemke, N., Sandrock, C., & Zanoli, R. (2025). BugBook: Data analysis methods in studies of insects for food and feed. Journal of Insects as Food and Feed, 11(18), S579–S605. Scopus. https://doi.org/10.1163/23524588-bja10209
Tigani, X., Michou, M., Efthymiou, V., Christou, A. I., Darviri, C., Charalampopoulou, M., Papadodima, S., Kanaka-Gantenbein, C., & Bacopoulou, F. (2025). Validation of the Greek Version of the Colorado Learning Difficulties Questionnaire. Children, 12(12). Scopus. https://doi.org/10.3390/children12121623
Vergílio, M. M., Kiihl, S. F., Batista Florindo, J. B., & Leonardi, G. R. (2025). Enhancing skin aging parameter assessment in clinical trials: AI-Driven analysis of ultrasound images. Biomedical Signal Processing and Control, 100. Scopus. https://doi.org/10.1016/j.bspc.2024.106962
Xiuqing, W., Pirasteh, S., Husain, H. J., Chauhan, B., Sivakumar, V. L., Shirmohammadi, M., & Mafi-Gholami, D. (2025). Leveraging machine learning for monitoring afforestation in mining areas: Evaluating Tata Steel’s restoration efforts in Noamundi, India. Environmental Monitoring and Assessment, 197(7). Scopus. https://doi.org/10.1007/s10661-025-14294-x
Yan, H., Lau, A., & Fan, H. (2025). Evaluating Deep Learning Advances for Point Cloud Semantic Segmentation in Urban Environments. KN - Journal of Cartography and Geographic Information, 75(1), 3–22. Scopus. https://doi.org/10.1007/s42489-025-00185-1
Yin, J., Cui, Z., Sheng, Q., Chen, J., & Zhang, M. (2025). Mechanical Properties of Rock Structural Planes under Cyclic Loading: A Review. International Journal of Geomechanics, 25(11). Scopus. https://doi.org/10.1061/IJGNAI.GMENG-11088
Zhai, C., Liu, B., Li, C., Zhao, X., Liu, H., & Hao, J. (2025). Research Progress of Detection and Grading Methods for Major Grapevine Diseases. Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 56(8), 341–359. Scopus. https://doi.org/10.6041/j.issn.1000-1298.2025.08.032
Zhang, F., Pan, A., Yang, J., Deng, S., Zhao, S., Zhou, C., & Yang, Y. (2025). ISGLNet: Infrared Small Target Detection with Intrinsic Sensitivity and Guided Learning. IEEE Transactions on Geoscience and Remote Sensing, 63. Scopus. https://doi.org/10.1109/TGRS.2025.3630246
Zhang, R. (2025). Toward interpretable machine learning: Evaluating models of heterogeneous predictions. Annals of Operations Research, 347(2), 867–887. Scopus. https://doi.org/10.1007/s10479-024-06033-1
Zhao, D., Chen, P., Song, C., Xiang, J., Zhou, J., Tang, Z., & Song, B. (2025). Generation of Hard SAT Instances and Its Application in Negative Databases for Privacy Enhancement. IEEE Transactions on Big Data. Scopus. https://doi.org/10.1109/TBDATA.2025.3640025
Zouraris, D., Mavrogiorgis, A., Tsoumanis, A., Saarimäki, L. A., del Giudice, G., Federico, A., Serra, A., Greco, D., Rouse, I., Subbotina, J., Lobaskin, V., Jagiello, K., Ciura, K., Judzinska, B., Miko?ajczyk, A., Sosnowska, A., Puzyn, T., Gulumian, M., Wepener, V., … Afantitis, A. (2025). CompSafeNano project: NanoInformatics approaches for safe-by-design nanomaterials. Computational and Structural Biotechnology Journal, 29, 13–28. Scopus. https://doi.org/10.1016/j.csbj.2024.12.024
Copyright (c) 2025 Misbahul Khairani, Cedric Butler, Markus Rolle

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


















