Personalized Learning through ChatGPT: A Quasi-Experimental Study on Adaptive Curriculum in High School Settings
Downloads
The challenge of catering to diverse learning paces and styles in traditional high school classrooms often limits student potential. The emergence of advanced AI, such as ChatGPT, presents a novel opportunity to create adaptive learning environments that personalize educational content in real-time. This study aimed to investigate the effectiveness of a ChatGPT-driven adaptive curriculum on student academic performance and engagement compared to conventional, non-adaptive teaching methods. A quasi-experimental, pre-test/post-test design was conducted with 110 high school students. The intervention group (n=55) utilized an adaptive curriculum where content was dynamically adjusted by ChatGPT based on performance, while the control group (n=55) received standard instruction. Academic performance was measured via subject-specific tests, and engagement was assessed using the Student Engagement Instrument (SEI). The intervention group demonstrated a statistically significant improvement in academic performance (p < .01) and higher engagement scores (p < .05) compared to the control group. The adaptive curriculum effectively addressed individual learning gaps and maintained student interest. Integrating ChatGPT to facilitate personalized, adaptive curricula is a highly effective strategy for enhancing both academic achievement and student engagement in high school settings. This approach offers a scalable solution to individualized instruction.
Auderset, S., & Campbell, E. W. (2024). A Mixtec Sound Change Database. Journal of Open Humanities Data, 10. Scopus. https://doi.org/10.5334/JOHD.184
Bian, X. (2024). A Comparison of English Learners’ Translation Bias Using Neurosemantic Analysis. Applied Mathematics and Nonlinear Sciences, 9(1). Scopus. https://doi.org/10.2478/amns.2023.2.01176
Bouvier, T., Nicolae, B., Costan, A., Bicer, T., Foster, I., & Antoniu, G. (2025). Efficient distributed continual learning for steering experiments in real-time. Future Generation Computer Systems, 162. Scopus. https://doi.org/10.1016/j.future.2024.07.016
Cadeddu, A., Chessa, A., De Leo, V., Fenu, G., Motta, E., Osborne, F., Reforgiato Recupero, D., Salatino, A., & Secchi, L. (2024). A comparative analysis of knowledge injection strategies for large language models in the scholarly domain. Engineering Applications of Artificial Intelligence, 133. Scopus. https://doi.org/10.1016/j.engappai.2024.108166
Calzolari N., Kan M.-Y., Hoste V., Lenci A., Sakti S., & Xue N. (Eds.). (2024). 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024—Main Conference Proceedings. In Jt. Int. Conf. Comput. Linguist., Lang. Resour. Eval., LREC-COLING - Main Conf. Proc. European Language Resources Association (ELRA); Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195933162&partnerID=40&md5=0d81b98d6a29c375892e69c5266476a6
Chen, Y., Li, J., Lin, S., Xu, Y., & Yang, C. (2024). A BiLSTM and CTC Based Multi-Sensor Information Fusion Frame for Continuous Sign Language Recognition. Int. Conf. Electr. Eng., Control Robot., EECR, 310–315. Scopus. https://doi.org/10.1109/EECR60807.2024.10607314
Çoban, E., & Altay, B. (2024). ChatGPT May Help Inform Patients in Dental Implantology. International Journal of Oral and Maxillofacial Implants, 39(5), e203–e208. Scopus. https://doi.org/10.11607/jomi.10777
Dvivedi, S. S., Vijay, V., Pujari, S. L. R., Lodh, S., & Kumar, D. (2024). A Comparative Analysis of Large Language Models for Code Documentation Generation. In Adams B., Zimmermann T., Ozkaya I., Lin D., & Zhang J.M. (Eds.), AIware—Proc. ACM Int. Conf. AI-Powered Softw., Co-located: ESEC/FSE (pp. 65–73). Association for Computing Machinery, Inc; Scopus. https://doi.org/10.1145/3664646.3664765
Dyer, A., Bahceci, R. B., Rajestari, M., Rouvalis, A., Singhal, A., Stodolinska, Y., Umniyati, S. A., & de Oliveira Vaz, H. R. M. (2024). A Multilingual Parallel Corpus for Coreference Resolution and Information Status in the Literary Domain. In Dakota D., Jablotschkin S., Kubler S., & Zinsmeister H. (Eds.), Workshop Treebanks Linguist. Theor., TLT - Proc. Conf. (pp. 55–64). Association for Computational Linguistics (ACL); Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-105000134354&partnerID=40&md5=403679629b45829b903c491ad408e18e
El Alami, H., & Rawat, D. B. (2024). DroneDefGANt: A Generative AI-Based Approach for Detecting UAS Attacks and Faults. In Valenti M., Reed D., & Torres M. (Eds.), IEEE Int Conf Commun (pp. 1933–1938). Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/ICC51166.2024.10622524
Fischbach, L. (2024). A Comparative Analysis of Speaker Diarization Models: Creating a Dataset for German Dialectal Speech. In Serikov O., Voloshina E., Voloshina E., Postnikova A., Muradoglu S., Le Ferrand E., Klyachko E., Vylomova E., Shavrina T., & Tyers F. (Eds.), FieldMatters—Workshop NLP Appl. Field Linguist. - Proc. Workshop (pp. 43–51). Association for Computational Linguistics (ACL); Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85204282688&partnerID=40&md5=283f1d31e7f19cc09128f07911ad85e4
Li, J., Zhang, D., Xie, Y., & Wulamu, A. (2024). A multi-type semantic interaction and enhancement method for tax question understanding. Engineering Applications of Artificial Intelligence, 130. Scopus. https://doi.org/10.1016/j.engappai.2023.107783
Liu, Y., Tilahun, G., Gao, X., Wen, Q., & Gervers, M. (2025). A Comparative Study of Static and Contextual Embeddings for Analyzing Semantic Changes in Medieval Latin Charters. In Hettiarachchi H., Ranasinghe T., Rayson P., Mitkov R., Gaber M., Premasiri D., Tan F.A., & Uyangodage L. (Eds.), Proc. Main Conf. Int. Conf. Comput. Linguist., COLING (pp. 182–192). Association for Computational Linguistics (ACL); Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-105000098462&partnerID=40&md5=497e9cfb7b13ca08f30682a4a2bf9753
Makhachashvili, R., & Semenist, I. (2025). Cybernetics and Informatics of Generative AI for Transdisciplinary Communication in Education. In Callaos N., Lace N., Sanchez B., & Savoie M. (Eds.), Proc. IMCIC. Int. Multi-Conf. Complex. Informatics Cybern., (pp. 254–261). International Institute of Informatics and Cybernetics; Scopus. https://doi.org/10.54808/IMCIC2025.01.254
Mi, Z., & Li, K. (2024). A Comparative Analysis of Different Large Language Models in Evaluating Student-Generated Questions. Int. Conf. Educ. Inf. Technol., ICEIT, 24–29. Scopus. https://doi.org/10.1109/ICEIT61397.2024.10540914
P?ibá?, P., Šmíd, J., Steinberger, J., & Mištera, A. (2024). A comparative study of cross-lingual sentiment analysis. Expert Systems with Applications, 247. Scopus. https://doi.org/10.1016/j.eswa.2024.123247
Schneider, P., Klettner, M., Simperl, E., & Matthes, F. (2024). A Comparative Analysis of Conversational Large Language Models in Knowledge-Based Text Generation. In Graham Y., Purver M., & Purver M. (Eds.), EACL - Conf. European Chapter Assoc. Comput. Linguist., Proc. Conf. (Vol. 2, pp. 358–367). Association for Computational Linguistics (ACL); Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85189927990&partnerID=40&md5=d533f72304001f6668aaf9a686db48cd
Simões, J. M., & Caldeira, W. (2024). Disrupting the Conventional: The Impact of Generative AI Models on Creativity in Visual Communications. E-Revista de Estudos Interculturais, 2024(12). Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85194174581&partnerID=40&md5=cd5571633270791c5dac902d0b1768c1
Sohrabi, M. A., Zare-Mirakabad, F., Ghidary, S. S., Saadat, M., & Sadegh-Zadeh, S.-A. (2024). A novel data augmentation approach for influenza A subtype prediction based on HA proteins. Computers in Biology and Medicine, 172. Scopus. https://doi.org/10.1016/j.compbiomed.2024.108316
Wei, Z., Xu, X., & Hui, P. (2024). Digital Democracy at Crossroads: A Meta-Analysis of Web and AI Influence on Global Elections. WWW Companion - Companion Proc. ACM Web Conf., 1126–1129. Scopus. https://doi.org/10.1145/3589335.3652003
Xie, Y., Huang, W., & Yang, E. (2024). A Comparative Study of Computational Linguistics Terminology in English Papers by Chinese and American Scholars. In Dong M., Hong J.-F., Lin J., & Jin P. (Eds.), Lect. Notes Comput. Sci.: Vol. 14515 LNAI (pp. 286–300). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-981-97-0586-3_23
Yao, L. (2024). A Knowledge Enhanced Pre-Training Model for Chinese Weibo Sentiment Analysis. Int. Conf. Cloud Comput. Big Data Anal., ICCCBDA, 33–39. Scopus. https://doi.org/10.1109/ICCCBDA61447.2024.10569319
Zhao, H., Zhao, D., Meng, J., Liu, S., & Lin, H. (2024). A Multi-Task Biomedical Named Entity Recognition Method Based on Data Augmentation. In Sun M., Liang J., Han X., Liu Z., & He Y. (Eds.), CCL - Chin. Natl. Conf. Comput. Linguist. (Vol. 1, pp. 1075–1086). Chinese National Conference on Computational Linguistic (CCL); Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-105001923127&partnerID=40&md5=1d2d3f973659acdf876fe0ea884177dc
Zhao, Y., Wang, B., Wang, Y., Zhao, D., Jin, X., Zhang, J., He, R., & Hou, Y. (2024). A Comparative Study of Explicit and Implicit Gender Biases in Large Language Models via Self-evaluation. In Calzolari N., Kan M.-Y., Hoste V., Lenci A., Sakti S., & Xue N. (Eds.), Jt. Int. Conf. Comput. Linguist., Lang. Resour. Eval., LREC-COLING - Main Conf. Proc. (pp. 186–198). European Language Resources Association (ELRA); Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195951814&partnerID=40&md5=59b8c941ff29e271e17128c0d7833ec8
Zhu, N., He, R., & Wang, Z. (2025). CarNet: A generative convolutional neural network-based line-of-sight/non-line-of-sight classifier for global navigation satellite systems by transforming multivariate time-series data into images. Engineering Applications of Artificial Intelligence, 145. Scopus. https://doi.org/10.1016/j.engappai.2025.110160
Zubiaga, I., Soroa, A., & Agerri, R. (2024). A LLM-Based Ranking Method for the Evaluation of Automatic Counter-Narrative Generation. In Al-Onaizan Y., Bansal M., & Chen Y.-N. (Eds.), EMNLP - Conf. Empir. Methods Nat. Lang. Process., Find. EMNLP (pp. 9572–9585). Association for Computational Linguistics (ACL); Scopus. https://doi.org/10.18653/v1/2024.findings-emnlp.559