Digital Storytelling with Generative AI: Impact on Creativity and Engagement in Middle School Learners
Downloads
Digital storytelling is a proven pedagogy for fostering student expression, but its potential is being redefined by generative artificial intelligence (AI). While AI offers unprecedented tools for creating visual and narrative assets, its specific impact on the creativity and engagement of middle school learners requires empirical investigation. This study aimed to evaluate the impact of integrating generative AI into digital storytelling projects on the creativity and engagement levels of middle school students compared to traditional digital methods. A quasi-experimental, pre-test/post-test design was conducted with 120 middle school students. The intervention group used generative AI tools to create story assets, while the control group used standard digital tools. Creativity was assessed using a standardized rubric, and engagement was measured with the Student Engagement Instrument (SEI). The intervention group showed statistically significant gains in creativity metrics, particularly in originality and elaboration (p < .01). This group also reported significantly higher levels of cognitive and behavioral engagement compared to the control group (p < .05). Integrating generative AI into digital storytelling projects serves as a powerful catalyst, enhancing both the creative output and the active engagement of middle school learners. The technology acts as a creative partner, enabling students to realize more ambitious narrative visions.
Ajani, O. S., Usigbe, M. J., Aboyeji, E., Uyeh, D. D., Ha, Y., Park, T., & Mallipeddi, R. (2023). Greenhouse Micro-Climate Prediction Based on Fixed Sensor Placements: A Machine Learning Approach. Mathematics, 11(14). Scopus. https://doi.org/10.3390/math11143052
Andrade, C., Fonseca, A., Santos, J. A., Bois, B., & Jones, G. V. (2024). Historic Changes and Future Projections in Köppen–Geiger Climate Classifications in Major Wine Regions Worldwide. Climate, 12(7). Scopus. https://doi.org/10.3390/cli12070094
Arima, E. Y., Denvir, A., Young, K. R., González-Rodríguez, A., & García-Oliva, F. (2022). Modelling avocado-driven deforestation in Michoacán, Mexico. Environmental Research Letters, 17(3). Scopus. https://doi.org/10.1088/1748-9326/ac5419
Belho, K., Rawat, M. S., & Rawat, P. K. (2023). GIS modeling to investigate environmental change and degradation in Kohima district, North East Hill (NEH) region of India. Environmental Monitoring and Assessment, 195(12). Scopus. https://doi.org/10.1007/s10661-023-12055-2
Choudhury, B. U., Nengzouzam, G., & Islam, A. (2022). Evaluation of climate change impact on soil erosion in the integrated farming system based hilly micro-watersheds using Revised Universal Soil Loss Equation. Catena, 214. Scopus. https://doi.org/10.1016/j.catena.2022.106306
Dong, P., Wang, L., Qiu, D., Liang, W., Cheng, J., Wang, H., Guo, F., & Chen, Y. (2024). Evaluation of the environmental factors influencing the quality of Astragalus membranaceus var. Mongholicus based on HPLC and the Maxent model. BMC Plant Biology, 24(1). Scopus. https://doi.org/10.1186/s12870-024-05355-3
Dubey, M., Mishra, A., & Singh, R. (2022). Identification of the most appropriate adaptation for rice and wheat in the face of climate change in eastern India. Journal of Water and Climate Change, 13(2), 943–962. Scopus. https://doi.org/10.2166/wcc.2021.446
Fu, X., & Jiang, D. (2022). High-throughput phenotyping: The latest research tool for sustainable crop production under global climate change scenarios. In Sustainable Crop Productivity and Quality under Climate Change: Responses of Crop Plants to Climate Change (pp. 313–381). Elsevier; Scopus. https://doi.org/10.1016/B978-0-323-85449-8.00003-8
Holler, C., Engelmaier, M., Kajtna, B., & Spornberger, A. (2024). Impacts of Climate Warming on Climate Parameters Relevant to Extensive Fruit Growing in Two Selected Regions of Austria. Mitteilungen Klosterneuburg, 74(4), 234–247. Scopus.
Jeeceelee, L., & Sahoo, U. K. (2022). Mizo Homegardens promote biodiversity conservation, nutritional security and environmental development in northeast India. Acta Ecologica Sinica, 42(5), 520–528. Scopus. https://doi.org/10.1016/j.chnaes.2021.12.005
Karim, A., Syakur, S., & Hifnalisa, H. (2023). Farmers coping strategies to climate change in sustainable Arabica coffee production. IOP Conf. Ser. Earth Environ. Sci., 1183(1). Scopus. https://doi.org/10.1088/1755-1315/1183/1/012097
Kumar, R., Nath, A. J., Nath, A., Sahu, N., & Pandey, R. (2022). Landsat-based multi-decadal spatio-temporal assessment of the vegetation greening and browning trend in the Eastern Indian Himalayan Region. Remote Sensing Applications: Society and Environment, 25. Scopus. https://doi.org/10.1016/j.rsase.2022.100695
Kumari, M., Zinta, G., Chauhan, R., Kumar, A., Singh, S., & Singh, S. (2023). Genetic resources and breeding approaches for improvement of amaranth (Amaranthus spp.) and quinoa (Chenopodium quinoa). Frontiers in Nutrition, 10. Scopus. https://doi.org/10.3389/fnut.2023.1129723
Liu, M., Yang, L., Su, M., Gong, W., Liu, Y., Yang, J., Huang, Y., & Zhao, C. (2024). Modeling the potential distribution of the energy tree species Triadica sebifera in response to climate change in China. Scientific Reports, 14(1). Scopus. https://doi.org/10.1038/s41598-023-51035-x
Mummidi, T. (2024). Millets, Shifting Cultivation and the Adivasis: Looking Through Culture, Policy and Politics. Sociological Bulletin, 73(4), 443–454. Scopus. https://doi.org/10.1177/00380229241287394
Nguyen, C. H., Setyaningsih, C. A., Jahnk, S. L., Saad, A., Sabiham, S., & Behling, H. (2022). Forest Dynamics and Agroforestry History since AD 200 in the Highland of Sumatra, Indonesia. Forests, 13(9). Scopus. https://doi.org/10.3390/f13091473
Patriche, C. V., & Irimia, L. M. (2022). Mapping the impact of recent climate change on viticultural potential in Romania. Theoretical and Applied Climatology, 148(3–4), 1035–1056. Scopus. https://doi.org/10.1007/s00704-022-03984-y
Paul, S., Chakraborty, D., & Tripathi, A. K. (2025). Frontline extension services as a buffer against social vulnerability to climate change: A case study of shifting cultivators in Northeast India. Journal of Environmental Management, 377. Scopus. https://doi.org/10.1016/j.jenvman.2025.124607
Pereira, R. R. D. C., Ribeiro e Silva, R., de Oliveira, V. P., & Valentin, J. L. (2024). Forecasting the impact of marine heat waves on farmed bivalves Nodipecten nodosus and Magallana gigas. Regional Studies in Marine Science, 80. Scopus. https://doi.org/10.1016/j.rsma.2024.103883
Pichler, M., Schmid, M., & Gingrich, S. (2022). Mechanisms to exclude local people from forests: Shifting power relations in forest transitions. Ambio, 51(4), 849–862. Scopus. https://doi.org/10.1007/s13280-021-01613-y
Qin, Z., Zhu, Y., Canadell, J. G., Chen, M., Li, T., Mishra, U., & Yuan, W. (2024). Global spatially explicit carbon emissions from land-use change over the past six decades (1961–2020). One Earth, 7(5), 835–847. Scopus. https://doi.org/10.1016/j.oneear.2024.04.002
Ratnayake, S. S., Reid, M., Larder, N., Kadupitiya, H. K., Hunter, D., Dharmasena, P. B., Kumar, L., Kogo, B., Herath, K., & Kariyawasam, C. S. (2023). Impact of Climate Change on Paddy Farming in the Village Tank Cascade Systems of Sri Lanka. Sustainability (Switzerland), 15(12). Scopus. https://doi.org/10.3390/su15129271
Sahana, M., Areendran, G., Raj, K., Sivadas, A., Abhijitha, C. S., & Ranjan, K. (2022). Introduction to Forest Resources in India: Conservation, Management and Monitoring Perspectives. In Conservation, Management and Monitoring of Forest Resources in India (pp. 3–31). Springer International Publishing; Scopus. https://doi.org/10.1007/978-3-030-98233-1_1
Sahoo, U. K., Ahirwal, J., Giri, K., Mishra, G., & Francaviglia, R. (2023). Modeling Land Use and Climate Change Effects on Soil Organic Carbon Storage under Different Plantation Systems in Mizoram, Northeast India. Agriculture (Switzerland), 13(7). Scopus. https://doi.org/10.3390/agriculture13071332
Santos, C. C. D., Gutiérrez, J. A. M., Brossard, M., Desjardins, T., & Ferraz, A. S. D. L. (2023). Land-Use and Land-Cover Changes and Farmers’ Perceptions of Ecosystem Services in an Eastern Amazon Rural Settlement. Professional Geographer, 75(6), 932–946. Scopus. https://doi.org/10.1080/00330124.2023.2199326
Sharma, C., & Kumar, P. (2024). IoT-Based ML Model to Sense Selection of Seed Crops in Changing Climatic Conditions of Punjab. In Shaw R.N., Siano P., Makhilef S., Ghosh A., & Shimi S.L. (Eds.), Lect. Notes Electr. Eng. (Vol. 1115, pp. 215–228). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-981-99-8661-3_16
Wang, H. (2023). Going Back to Grassland? Assessing the Impact of Groundwater Decline on Irrigated Agriculture Using Remote Sensing Data. Remote Sensing, 15(6). Scopus. https://doi.org/10.3390/rs15061698
Yue, C., Li, H., & Shi, X. (2024). Geographical Distribution Dynamics of Acorus calamus in China Under Climate Change. Plants, 13(23). Scopus. https://doi.org/10.3390/plants13233352


















