Thematic Learning Model for Islamic Religious Education in Madrasah Ibtidaiyah
Downloads
During Mohammad Nuh's tenure as education minister in 2013, the KTSP 2006 curriculum was still in use. Because the 2006 KTSP was not in accordance with Law 20/2003 on National Education System, the education minister created a new curriculum, namely the 2013 curriculum. In this curriculum, the thematic learning model used for madrasah Ibtidaiyah emerged. This study aims to determine the thematic learning model of Islamic religious education in Madrasah Ibtidaiyah. The research method used is quantitative method, using a survey model that researchers use is google form and researchers also conduct in-depth interviews using WhatsApp. The results of the research that researchers found were that this thematic learning model was in accordance with the 2013 curriculum. The conclusion that researchers can draw from this research is that the thematic learning model of Islamic religious education is very helpful for students in the learning process at madrasah Ibtidaiyah. Limitations in thematic learning models include demanding relatively good learning abilities of students, both in academics and in the field of creativity, because thematic learning emphasizes students' ability to analyze. Therefore, the researcher hopes that future researchers can examine the thematic learning model of Islamic religious education at a more advanced level.
Aggarwal, H. K., Mani, M. P., & Jacob, M. (2019). MoDL: Model-Based Deep Learning Architecture for Inverse Problems. IEEE Transactions on Medical Imaging, 38(2), 394–405. https://doi.org/10.1109/TMI.2018.2865356
Alam, K. Md. R., Siddique, N., & Adeli, H. (2020). A dynamic ensemble learning algorithm for neural networks. Neural Computing and Applications, 32(12), 8675–8690. https://doi.org/10.1007/s00521-019-04359-7
Al-Fraihat, D., Joy, M., Masa’deh, R., & Sinclair, J. (2020). Evaluating E-learning systems success: An empirical study. Computers in Human Behavior, 102, 67–86. https://doi.org/10.1016/j.chb.2019.08.004
Atherton, H., Brant, H., Ziebland, S., Bikker, A., Campbell, J., Gibson, A., McKinstry, B., Porqueddu, T., & Salisbury, C. (2018). Alternatives to the face-to-face consultation in general practice: Focused ethnographic case study. British Journal of General Practice, 68(669), e293–e300. https://doi.org/10.3399/bjgp18X694853
Braun, V., Clarke, V., Hayfield, N., & Terry, G. (2019). Thematic Analysis. In P. Liamputtong (Ed.), Handbook of Research Methods in Health Social Sciences (pp. 843–860). Springer Singapore. https://doi.org/10.1007/978-981-10-5251-4_103
Castleberry, A., & Nolen, A. (2018). Thematic analysis of qualitative research data: Is it as easy as it sounds? Currents in Pharmacy Teaching and Learning, 10(6), 807–815. https://doi.org/10.1016/j.cptl.2018.03.019
Catalano, A. S., Lyons-White, J., Mills, M. M., & Knight, A. T. (2019). Learning from published project failures in conservation. Biological Conservation, 238, 108223. https://doi.org/10.1016/j.biocon.2019.108223
Cheng, B. T., Wangmo, T., & Hauser, J. M. (2019). Patterns of Palliative Care Beliefs Among Adults in the U.S.: Analysis of a National Cancer Database. Journal of Pain and Symptom Management, 58(6), 1056–1067. https://doi.org/10.1016/j.jpainsymman.2019.07.030
Chong, L. S. H., Fitzgerald, D. A., Craig, J. C., Manera, K. E., Hanson, C. S., Celermajer, D., Ayer, J., Kasparian, N. A., & Tong, A. (2018). Children’s experiences of congenital heart disease: A systematic review of qualitative studies. European Journal of Pediatrics, 177(3), 319–336. https://doi.org/10.1007/s00431-017-3081-y
Cidral, W. A., Oliveira, T., Di Felice, M., & Aparicio, M. (2018). E-learning success determinants: Brazilian empirical study. Computers & Education, 122, 273–290. https://doi.org/10.1016/j.compedu.2017.12.001
Coates, J. K., & Pimlott?Wilson, H. (2019). Learning while playing: Children’s Forest School experiences in the UK. British Educational Research Journal, 45(1), 21–40. https://doi.org/10.1002/berj.3491
Davis, A. N., Carlo, G., Bennett, D., Gallarza, W., & Saiz, D. (2022). Understanding Racial Attitudes Among Students and Teachers in a Ethnically/Racially Diverse High School. Journal of Research on Adolescence, 32(2), 417–431. https://doi.org/10.1111/jora.12730
Deslauriers, L., McCarty, L. S., Miller, K., Callaghan, K., & Kestin, G. (2019). Measuring actual learning versus feeling of learning in response to being actively engaged in the classroom. Proceedings of the National Academy of Sciences, 116(39), 19251–19257. https://doi.org/10.1073/pnas.1821936116
Fatchurrohman, F. (2015). PENGEMBANGAN MODEL PEMBELAJARAN TEMATIK INTEGRATIF EKSTERNAL DAN INTERNAL DI MADRASAH IBTIDAIYAH. INFERENSI, 9(2), 329. https://doi.org/10.18326/infsl3.v9i2.329-350
Ferentinos, K. P. (2018). Deep learning models for plant disease detection and diagnosis. Computers and Electronics in Agriculture, 145, 311–318. https://doi.org/10.1016/j.compag.2018.01.009
Ferri, F., Grifoni, P., & Guzzo, T. (2020). Online Learning and Emergency Remote Teaching: Opportunities and Challenges in Emergency Situations. Societies, 10(4), 86. https://doi.org/10.3390/soc10040086
Fox, K., Dowling, D. O., & Miller, K. (2020). A Curriculum for Blackness: Podcasts as Discursive Cultural Guides, 2010-2020. Journal of Radio & Audio Media, 27(2), 298–318. https://doi.org/10.1080/19376529.2020.1801687
Gallagher, S. E., & Savage, T. (2020). Challenge-based learning in higher education: An exploratory literature review. Teaching in Higher Education, 1–23. https://doi.org/10.1080/13562517.2020.1863354
Giger, M. L. (2018). Machine Learning in Medical Imaging. Journal of the American College of Radiology, 15(3), 512–520. https://doi.org/10.1016/j.jacr.2017.12.028
Goh, G. D., Sing, S. L., & Yeong, W. Y. (2021). A review on machine learning in 3D printing: Applications, potential, and challenges. Artificial Intelligence Review, 54(1), 63–94. https://doi.org/10.1007/s10462-020-09876-9
Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2019). A Survey of Methods for Explaining Black Box Models. ACM Computing Surveys, 51(5), 1–42. https://doi.org/10.1145/3236009
Jiang, M., Huang, Z., Qiu, L., Huang, W., & Yen, G. G. (2018). Transfer Learning-Based Dynamic Multiobjective Optimization Algorithms. IEEE Transactions on Evolutionary Computation, 22(4), 501–514. https://doi.org/10.1109/TEVC.2017.2771451
Kiger, M. E., & Varpio, L. (2020). Thematic analysis of qualitative data: AMEE Guide No. 131. Medical Teacher, 42(8), 846–854. https://doi.org/10.1080/0142159X.2020.1755030
Kumar Basak, S., Wotto, M., & Bélanger, P. (2018). E-learning, M-learning and D-learning: Conceptual definition and comparative analysis. E-Learning and Digital Media, 15(4), 191–216. https://doi.org/10.1177/2042753018785180
Landrum, B., Bannister, J., Garza, G., & Rhame, S. (2021). A class of one: Students’ satisfaction with online learning. Journal of Education for Business, 96(2), 82–88. https://doi.org/10.1080/08832323.2020.1757592
Lester, J. N., Cho, Y., & Lochmiller, C. R. (2020). Learning to Do Qualitative Data Analysis: A Starting Point. Human Resource Development Review, 19(1), 94–106. https://doi.org/10.1177/1534484320903890
Liu, Y., Ruiz-Menjivar, J., Zhang, L., Zhang, J., & Swisher, M. E. (2019). Technical training and rice farmers’ adoption of low-carbon management practices: The case of soil testing and formulated fertilization technologies in Hubei, China. Journal of Cleaner Production, 226, 454–462. https://doi.org/10.1016/j.jclepro.2019.04.026
López Belmonte, J., Moreno-Guerrero, A.-J., López Núñez, J. A., & Pozo Sánchez, S. (2019). Analysis of the Productive, Structural, and Dynamic Development of Augmented Reality in Higher Education Research on the Web of Science. Applied Sciences, 9(24), 5306. https://doi.org/10.3390/app9245306
Lundberg, S. M., Nair, B., Vavilala, M. S., Horibe, M., Eisses, M. J., Adams, T., Liston, D. E., Low, D. K.-W., Newman, S.-F., Kim, J., & Lee, S.-I. (2018). Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nature Biomedical Engineering, 2(10), 749–760. https://doi.org/10.1038/s41551-018-0304-0
Lusch, B., Kutz, J. N., & Brunton, S. L. (2018). Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications, 9(1), 4950. https://doi.org/10.1038/s41467-018-07210-0
Määttä, K., & Uusiautti, S. (2020). Educational Psychological Perspectives on Sustainability Education. Sustainability, 12(1), 398. https://doi.org/10.3390/su12010398
Mack, E., Breit, M., Krischler, M., Gnas, J., & Preckel, F. (2021). Talent development in natural science in elementary school: A juxtaposition of research and practice. Teaching and Teacher Education, 104, 103366. https://doi.org/10.1016/j.tate.2021.103366
McDonald, G. K., Moser, C. A., & Giesbrecht, G. G. (2019). Public knowledge, attitudes and practices of vehicle submersion incidents: A pilot study. Injury Epidemiology, 6(1), 21. https://doi.org/10.1186/s40621-019-0192-0
Nugroho, I. S., Luvita, W. F., & Muh. Hanif, Muh. H. (2021). METODE PEMBELAJARAN TEMATIK DAN PENDIDIKAN AGAMA ISLAM BAGI SISWA TUNARUNGU. Mozaic?: Islam Nusantara, 7(1), 93–106. https://doi.org/10.47776/mozaic.v7i1.178
Park, Y., Depeursinge, C., & Popescu, G. (2018). Quantitative phase imaging in biomedicine. Nature Photonics, 12(10), 578–589. https://doi.org/10.1038/s41566-018-0253-x
Popat, S., & Starkey, L. (2019). Learning to code or coding to learn? A systematic review. Computers & Education, 128, 365–376. https://doi.org/10.1016/j.compedu.2018.10.005
Rasmitadila, R., Aliyyah, R. R., Rachmadtullah, R., Samsudin, A., Syaodih, E., Nurtanto, M., & Tambunan, A. R. S. (2020). The Perceptions of Primary School Teachers of Online Learning during the COVID-19 Pandemic Period: A Case Study in Indonesia. Journal of Ethnic and Cultural Studies, 90–109. https://doi.org/10.29333/ejecs/388
Ribli, D., Horváth, A., Unger, Z., Pollner, P., & Csabai, I. (2018). Detecting and classifying lesions in mammograms with Deep Learning. Scientific Reports, 8(1), 4165. https://doi.org/10.1038/s41598-018-22437-z
Sharma, R., Kamble, S. S., Gunasekaran, A., Kumar, V., & Kumar, A. (2020). A systematic literature review on machine learning applications for sustainable agriculture supply chain performance. Computers & Operations Research, 119, 104926. https://doi.org/10.1016/j.cor.2020.104926
Sheehan, L., Oexle, N., Armas, S. A., Wan, H. T., Bushman, M., Glover, L., & Lewy, S. A. (2019). Benefits and risks of suicide disclosure. Social Science & Medicine, 223, 16–23. https://doi.org/10.1016/j.socscimed.2019.01.023
Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on Image Data Augmentation for Deep Learning. Journal of Big Data, 6(1), 60. https://doi.org/10.1186/s40537-019-0197-0
Subhash, S., & Cudney, E. A. (2018). Gamified learning in higher education: A systematic review of the literature. Computers in Human Behavior, 87, 192–206. https://doi.org/10.1016/j.chb.2018.05.028
Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P. H. S., & Hospedales, T. M. (2018). Learning to Compare: Relation Network for Few-Shot Learning. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 1199–1208. https://doi.org/10.1109/CVPR.2018.00131
Thoifah, I. (2016). Efektivitas Pembelajaran Tematik Pada Materi Pendidikan Agama Islam (PAI) Di MI Hidayatul Islam Mentoro Tuban. MADRASAH, 7(1), 18. https://doi.org/10.18860/jt.v7i1.3304
Universidad de Santiago de Compostela, & Caride, J. A. (2020). Educar y educarnos a tiempo, pedagógica y socialmente. Revista Española de Pedagogía, 78(277). https://doi.org/10.22550/REP78-3-2020-03
Urban, G., Tripathi, P., Alkayali, T., Mittal, M., Jalali, F., Karnes, W., & Baldi, P. (2018). Deep Learning Localizes and Identifies Polyps in Real Time With 96% Accuracy in Screening Colonoscopy. Gastroenterology, 155(4), 1069-1078.e8. https://doi.org/10.1053/j.gastro.2018.06.037
Wamsler, C. (2020). Education for sustainability: Fostering a more conscious society and transformation towards sustainability. International Journal of Sustainability in Higher Education, 21(1), 112–130. https://doi.org/10.1108/IJSHE-04-2019-0152
Wang, J., Chen, Y., Hao, S., Peng, X., & Hu, L. (2019). Deep learning for sensor-based activity recognition: A survey. Pattern Recognition Letters, 119, 3–11. https://doi.org/10.1016/j.patrec.2018.02.010
Wang, J., Ma, Y., Zhang, L., Gao, R. X., & Wu, D. (2018). Deep learning for smart manufacturing: Methods and applications. Journal of Manufacturing Systems, 48, 144–156. https://doi.org/10.1016/j.jmsy.2018.01.003
Yu, F., Yan, L., Wang, N., Yang, S., Wang, L., Tang, Y., Gao, G., Wang, S., Ma, C., Xie, R., Wang, F., Tan, C., Zhu, L., Guo, Y., & Zhang, F. (2020). Quantitative Detection and Viral Load Analysis of SARS-CoV-2 in Infected Patients. Clinical Infectious Diseases, 71(15), 793–798. https://doi.org/10.1093/cid/ciaa345
Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., & Gao, R. X. (2019). Deep learning and its applications to machine health monitoring. Mechanical Systems and Signal Processing, 115, 213–237. https://doi.org/10.1016/j.ymssp.2018.05.050
Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. V. (2018). Learning Transferable Architectures for Scalable Image Recognition. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 8697–8710. https://doi.org/10.1109/CVPR.2018.00907
Zou, H., Zhang, Y., Guo, L., Wang, P., He, X., Dai, G., Zheng, H., Chen, C., Wang, A. C., Xu, C., & Wang, Z. L. (2019). Quantifying the triboelectric series. Nature Communications, 10(1), 1427. https://doi.org/10.1038/s41467-019-09461-x
Copyright (c) 2023 Al-Hijr: Journal of Adulearn World

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.