The Use of Clustering Techniques to Enhance the Accuracy of Islamic Religious Knowledge Assessment
Downloads
This study aims to enhance the accuracy of Islamic religious knowledge assessment among Madrasah students in Kolaka, Indonesia, by applying the K-Means clustering technique. The background of this research is based on the variation in students' understanding of two important aspects: Fiqh and Aqidah Akhlak. The method used includes data collection from 181 students, followed by descriptive analysis and determination of the number of clusters using the Elbow Method. The results show that the optimal number of clusters is three, representing the categories of High, Medium, and Low. After applying K-Means, a Silhouette Coefficient score of 0.548 was obtained, indicating that the student clustering was effective and valid. These findings provide insights for educators to design learning strategies that are more aligned with the students' needs and highlight the importance of using data analysis techniques in education. Thus, this study contributes to the development of more accurate assessment methods in the context of religious education
Afifah, A. N., Nurcahyawati, V., & Hananto, V. R. (2023). Analisis Clustering dan Pemetaan Sebaran Pelanggan Perusahaan Properti di Sidoarjo. Jurnal Edukasi Dan Penelitian Informatika, 9(3), 502–508. https://geokeo.com/database/state/id/
Badruttamam, A., Sudarno, S., & Maruddani, D. A. I. (2020). Penerapan Analisis Klaster K-Modes dengan Validasi Davies Bouldin Index Dalam Menentukan Klasterisasi Kanal Youtube di Indonesia (Studi Kasus: 250 Kanal YouTube Indonesia Teratas Menurut Socialblade). Jurnal Gaussian, 9(3), 263–272. https://doi.org/10.14710/j.gauss.v9i3.28907
Das, D., Kayal, P., & Maiti, M. (2023). A K-means clustering model for analyzing the Bitcoin extreme value returns. Decision Analytics Journal, 6(June 2022), 100152. https://doi.org/10.1016/j.dajour.2022.100152
Faizan, M., Zuhairi, M. F., Ismail, S., & Sultan, S. (2020). Applications of Clustering Techniques in Data Mining: A Comparative Study. International Journal of Advanced Computer Science and Applications, 11(12), 146–153. https://doi.org/10.14569/IJACSA.2020.0111218
Fani, S. M., Santoso, R., & Suparti, S. (2021). Penerapan Text Mining Untuk Melakukan Clustering Data Tweet Akun Blibli Pada Media Sosial Twitter Menggunakan K-Means Clustering. Jurnal Gaussian, 10(4), 583–593. https://doi.org/10.14710/j.gauss.v10i4.30409
Febianda, K., Ratnawati, D. E., & Rahayudi, B. (2020). Analisis Pengelompokkan Penjualan Rattan Furniture Pada PT. Hymsa Indotraco Berbasis Algoritma K-Means Clustering. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 4(6), 1882–1887. http://j-ptiik.ub.ac.id
Guntara, M., & Lutfi, N. (2023). Optimasi Cacah Klaster pada Klasterisasi dengan Algoritma KMeans Menggunakan Silhouette Coeficient dan Elbow Method. JuTI “Jurnal Teknologi Informasi,” 2(1), 43. https://doi.org/10.26798/juti.v2i1.944
Hartanti, N. T. (2020). Metode Elbow dan K-Means Guna Mengukur Kesiapan Siswa SMK Dalam Ujian Nasional. Jurnal Nasional Teknologi Dan Sistem Informasi, 6(2), 82–89. https://doi.org/10.25077/teknosi.v6i2.2020.82-89
Kurniadi, D., Agustin, Y. H., Akbar, H. I. N., & Farida, I. (2023). Penerapan Algoritma k-Means Clustering untuk Pengelompokan Pembangunan Jalan pada Dinas Pekerjaan Umum dan Penataan Ruang. Aiti, 20(1), 64–77. https://doi.org/10.24246/aiti.v20i1.64-77
Maharrani, R. H., Abda’u, P. D., & Hastuti, D. H. (2022). JEPIN (Jurnal Edukasi dan Penelitian Informatika) Kabupaten Cilacap dengan Metode K-Means. JEPIN (Jurnal Edukasi Dan Penelitian Informatika), 3(3), 1–7. https://www.visualcrossing.com/.
Muningsih, E., Maryani, I., & Handayani, V. R. (2021). Penerapan Metode K-Means dan Optimasi Jumlah Cluster dengan Index Davies Bouldin untuk Clustering Propinsi Berdasarkan Potensi Desa. Jurnal Sains Dan Manajemen, 9(1), 96. www.bps.go.id
Nabila, Z., Isnain, A. R., Permata, & Abidin, Z. (2021). Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means. Jurnal Teknologi Dan Sistem Informasi (JTSI), 2(2), 100. http://jim.teknokrat.ac.id/index.php/JTSI
Nugroho, B. S., Susilowati, Y., & Nurhasanah, N. (2022). Aplikasi Metode Analisis Fraktal dan K-Means Clustering untuk Identifikasi Retinopati Diabetik dan Retinopati Hipertensi menggunakan Citra Fundus Mata. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 8(1), 128. https://doi.org/10.26418/jp.v8i1.54043
Orisa, M. (2022). Optimasi Cluster pada Algoritma K-Means. Prosiding SENIATI, 6(2), 430–437. https://doi.org/10.36040/seniati.v6i2.5034
Oyelade, J., Isewon, I., Oladipupo, O., Emebo, O., Omogbadegun, Z., Aromolaran, O., Uwoghiren, E., Olaniyan, D., & Olawole, O. (2019). Data Clustering: Algorithms and Its Applications. Proceedings - 2019 19th International Conference on Computational Science and Its Applications, ICCSA 2019, ii, 71–81. https://doi.org/10.1109/ICCSA.2019.000-1
Paembonan, S., & Abduh, H. (2021). Penerapan Metode Silhouette Coefficient untuk Evaluasi Clustering Obat. PENA TEKNIK: Jurnal Ilmiah Ilmu-Ilmu Teknik, 6(2), 48. https://doi.org/10.51557/pt_jiit.v6i2.659
Pamuji, A. (2022). Data Mining dengan Segmentasi Pengguna pada Keamanan Sistem File. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 8(1), 154. https://doi.org/10.26418/jp.v8i1.52233
Sopyan, Y., Lesmana, A. D., & Juliane, C. (2022). Analisis Algoritma K-Means dan Davies Bouldin Index dalam Mencari Cluster Terbaik Kasus Perceraian di Kabupaten Kuningan. Building of Informatics, Technology and Science (BITS), 4(3), 1464–1470. https://doi.org/10.47065/bits.v4i3.2697
Sovia, R., Mandala, E. P. W., & Mardhiah, S. (2020). K-Means Algorithm in Selection of Outstanding Students and SAW Method for Prediction of Outstanding Scholarship Recipients. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 6(2), 181. https://jurnal.untan.ac.id/index.php/jepin/article/view/37759
Srimurdianti, A., Sukamto, Setiawan, W., Esyudha, E., & Pratama. (2023). JEPIN (Jurnal Edukasi dan Penelitian Informatika) Data Mining untuk Pengelompokan Saham pada Sektor Energi dengan Metode K-Means. 9(1), 76–81. https://jurnal.untan.ac.id/index.php/jepin/article/viewFile/62509/75676597024
Wahyu, A., & Rushendra, R. (2022). Klasterisasi Dampak Bencana Gempa Bumi Menggunakan Algoritma K-Means di Pulau Jawa. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 8(1), 174. https://doi.org/10.26418/jp.v8i1.52260
Yang, M. S., & Hussain, I. (2023). Unsupervised Multi-View K-Means Clustering Algorithm. IEEE Access, 11(January), 13574–13593. https://doi.org/10.1109/ACCESS.2023.3243133
Copyright (c) 2025 Muh. Nurtanzis Sutoyo, Nasruddin, Hasan Djidu

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.