Application of Machine Learning to Personalization of Adaptive Curriculum in Indonesian Middle Schools
Downloads
In recent years, there has been increasing interest in utilizing Machine Learning (ML) to personalize the learning experience in educational settings. The application of ML in middle school curriculums in Indonesia presents an opportunity to enhance adaptive learning models tailored to individual students’ needs. This study aims to explore the potential of integrating ML algorithms to create a personalized, adaptive curriculum for middle school students. The primary objective is to evaluate how ML can optimize learning outcomes by adjusting content delivery based on student performance and learning patterns. Using a mixed-methods approach, the research combines qualitative data from educators and quantitative data from student performance metrics to design a model for adaptive learning. The ML algorithms used include decision trees, clustering, and reinforcement learning, which adaptively modify the curriculum based on real-time student feedback. The results show a significant improvement in student engagement and academic performance, with tailored content leading to better learning outcomes. The study concludes that ML-driven personalization can be effectively integrated into middle school curriculums, offering a scalable solution to enhance educational quality in Indonesia.
Ahmad, I., Sharma, S., Leal-Saballos, C., Kumar, M., Kumar, A., & Ahmad, S. (2025). Predicting Early Dropouts in SWAYAM MOOCs Using Machine Learning Techniques: A Comparative Analysis. Dalam Singh R. & Gehlot A. (Ed.), Commun. Comput. Info. Sci.: Vol. 2358 CCIS (hlm. 250–262). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-80778-7_18
Awd, M., & Walther, F. (2025). AI-Powered Very-High-Cycle Fatigue Control: Optimizing Microstructural Design for Selective Laser Melted Ti-6Al-4V. Materials, 18(7). Scopus. https://doi.org/10.3390/ma18071472
Balart, T. S., & Shryock, K. J. (2025). A Framework for Integrating Artificial General Intelligence into Engineering Education. International Journal of Engineering Education, 41(1), 171–194. Scopus.
Bandarigodage, L., de Silva, T., & Ranasinghe, E. (2025). Navigating Free Online IT Courses: A Study of Completion in open.uom.lk. Dalam Anutariya C., Bonsangue M.M., Budhiarti-Nababan E., & Sitompul O.S. (Ed.), Commun. Comput. Info. Sci.: Vol. 2318 CCIS (hlm. 63–77). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-981-97-9793-6_5
Barzegar, R., Kurepa, M. N., & Fani, H. (2025). Adaptive Loss-based Curricula for Neural Team Recommendation. WSDM - Proc. ACM Int. Conf. Web Search Data Min., 914–923. Scopus. https://doi.org/10.1145/3701551.3703574
Chaudhry, S., & Sharma, A. (2025). Dynamic Data Distribution-based Curriculum Learning. Information Sciences, 702. Scopus. https://doi.org/10.1016/j.ins.2025.121924
Chu, L. F., & Kurup, V. (2025). The Promise of Artificial Intelligence and Machine Learning in Geriatric Anesthesiology Education: An Idea Whose Time Has Come. Current Anesthesiology Reports, 15(1). Scopus. https://doi.org/10.1007/s40140-024-00660-x
Chun, J., Kim, J., Kim, H., Lee, G., Cho, S., Kim, C., Chung, Y., & Heo, S. (2025). A Comparative Analysis of On-Device AI-Driven, Self-Regulated Learning and Traditional Pedagogy in University Health Sciences Education. Applied Sciences (Switzerland), 15(4). Scopus. https://doi.org/10.3390/app15041815
Dong, W. (2025). The Design of Teaching System for College Piano Online Course Considering Network Delay and Bandwidth Optimization. International Journal of High Speed Electronics and Systems. Scopus. https://doi.org/10.1142/S0129156425404292
Dubey, P. K., & Crevar, A. R. (2025). Integrating artificial intelligence in higher education: Enhancing pedagogy, instruction, and administration. Dalam AI Integr. Into Andragog. Educ. (hlm. 181–208). IGI Global; Scopus. https://doi.org/10.4018/979-8-3373-0502-8.ch008
Geetha, M. C. S., Kaviyassri, K., Pacifica, J. J., & Kaviyadharshini, M. (2025). Education 4.0: Unraveling the Data Science Connection. Dalam Cyber security and Data Science Innovations for Sustainable Development of HEICC: Healthcare, Education, Industry, Cities, and Communities (hlm. 196–212). CRC Press; Scopus. https://doi.org/10.1201/9781032711300-14
He, L. (2025). Investigation into art education course suggestion algorithms using a lightweight gradient boosting machine and deep belief network. Dalam Agaian S. (Ed.), Proc SPIE Int Soc Opt Eng (Vol. 13550). SPIE; Scopus. https://doi.org/10.1117/12.3059313
Huang, J., Xie, Y., Chen, Z., & Su, Y. (2025). Curriculum-Guided Adversarial Learning for Enhanced Robustness in 3D Object Detection. Sensors, 25(6). Scopus. https://doi.org/10.3390/s25061697
Islam, U., Alali, I. K., Alotaibi, S. D., Alzaid, Z., Shah, B., Ali, I., & Moreira, F. (2025). Introducing the Hyperdynamic Adaptive Learning Fusion (HALF) model for superior predictive analytics in E-learning. Neural Computing and Applications. Scopus. https://doi.org/10.1007/s00521-025-11018-7
Kansagra, J., Singhadiya, C., & Suryanarayana, G. (2025). AI-enhanced evaluation: A survey of machine learning techniques for assessing long answers. Dalam Digital Transformation and Sustainability of Bus. (hlm. 120–123). CRC Press; Scopus. https://doi.org/10.1201/9781003606185-28
Kuralay, A., Bakirova, K., Kabatayeva, Z., Igissinova, Z., & Lutay, S. (2025). Research competencies of students direction “forestry” in the context of field practices. International Journal of Innovative Research and Scientific Studies, 8(2), 583–597. Scopus. https://doi.org/10.53894/ijirss.v8i2.5245
Li, X. (2025). Biosensor technology for adaptive intelligent education systems to enhance personalized English learning. MCB Molecular and Cellular Biomechanics, 22(1). Scopus. https://doi.org/10.62617/mcb912
Meng, Y. (2025). Design of English Teaching System Based on Artificial Intelligence Technology. Proc. Int. Conf. Artif. Intell. Future Educ., AIFE, 109–113. Scopus. https://doi.org/10.1145/3708394.3708414
Molnár, G., & Nagy, E. (2025). Current Issues in Effective Learning: Methodological and Technological Challenges and Opportunities Based on Modern ICT and Artificial Intelligence. Dalam Tur?áni M. (Ed.), EAI/Springer Inno. Comm. Comp. (hlm. 1–11). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-81261-3_1
Mukkala, P. R., Vuyyuru, T., Ramana Murthy, B. S. N. V., Rao, A. S., & Said, N. A. (2025). Integrating ICT with Artificial Intelligence for Transformative Education. Journal of Information Systems Engineering and Management, 10, 546–555. Scopus. https://doi.org/10.52783/jisem.v10i10s.1418
Nwokolo, S. C., Obiwulu, A. U., Okonkwo, P. C., Orji, R., Alsenani, T. R., Mansir, I. B., & Orji, C. (2025). Machine learning and physics-based model hybridization to assess the impact of climate change on single- and dual-axis tracking solar-concentrated photovoltaic systems. Physics and Chemistry of the Earth, 138. Scopus. https://doi.org/10.1016/j.pce.2025.103881
Odriozola-Olalde, H., Zamalloa, M., Arana-Arexolaleiba, N., & Perez-Cerrolaza, J. (2025). Towards robust shielded reinforcement learning through adaptive constraints and exploration: The fear field framework. Engineering Applications of Artificial Intelligence, 144. Scopus. https://doi.org/10.1016/j.engappai.2025.110055
Roodsari, S. T., Köhler, T., & Azizi Ghanbari, S. (2025). Artificial Intelligence-Based Learning Objective-Oriented Formative Feedback for Students in Higher Education Based on the Instructional Design. Dalam Auer M.E. & Rüütmann T. (Ed.), Lect. Notes Networks Syst.: Vol. 1260 LNNS (hlm. 504–513). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-85652-5_50
Salonga, J. C., Ruiz, J. A. C., Roño, N. S., Santiago, C. S., & Reyes, J. L. (2025). Student Proficiency: A Review of Comprehension, Skills, and Influence of Machine Learning. Dalam Bhateja V., Patel P., & Simic M. (Ed.), Smart Innov. Syst. Technol. (Vol. 420, hlm. 161–171). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-981-96-0139-4_13
Shi, X., Jiang, D., Liu, H., & Hu, X. (2025). Research on energy management optimization of hybrid electric vehicles based on improved curriculum learning. Energy, 324. Scopus. https://doi.org/10.1016/j.energy.2025.136061
Silva Bravo, N. F., Martins, A. F., de Souza Fonseca Rodrigues, T. B., Machado, M., Bernardino, H. S., Vieira, A. B., Barbosa, H. J. C., & de Souza, J. F. (2025). Improving learning material repositories using student profiles. Soft Computing. Scopus. https://doi.org/10.1007/s00500-025-10450-0
Supriya, Y., Bhulakshmi, D., Bhattacharya, S., Gadekallu, T. R., Kaluri, R., Sumathy, S., Koppu, S., Vyas, P., Brown, D. J., & Mahmud, M. (2025). Federated learning in medical education in Industry 5.0. Dalam Fed. Learn. For Multimed. Data Process. And Secur. In Industry 5.0 (hlm. 225–247). Institution of Engineering and Technology; Scopus. https://doi.org/10.1049/PBPC066E_ch11
Tasliarmut, F., Mirboland, M., & Koch, C. (2025). A Framework for Adaptive Learning and Teaching in Higher Education in Engineering. Dalam Francis A., Miresco E., & Melhado S. (Ed.), Lect. Notes Civ. Eng.: Vol. 630 LNCE (hlm. 336–345). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-84224-5_27
Vorobyeva, K. I., Belous, S., Savchenko, N. V., Smirnova, L. M., Nikitina, S. A., & Zhdanov, S. P. (2025). Personalized learning through AI: Pedagogical approaches and critical insights. Contemporary Educational Technology, 17(2). Scopus. https://doi.org/10.30935/cedtech/16108
Yu, R., Peng, C., Zhu, J., Chen, M., & Zhang, R. (2025). Weighted Multi-Modal Contrastive Learning Based Hybrid Network for Alzheimer’s Disease Diagnosis. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 33, 1135–1144. Scopus. https://doi.org/10.1109/TNSRE.2025.3549730
Zhao, Y., Gong, M., Zhang, M., Qin, A. K., Jiang, F., & Li, J. (2025). SPCNet: Deep Self-Paced Curriculum Network Incorporated With Inductive Bias. IEEE Transactions on Neural Networks and Learning Systems. Scopus. https://doi.org/10.1109/TNNLS.2025.3544724
Zhuang, J., Li, J., Shi, C., Lin, X., & Fu, Y.-G. (2025). Enhanced Graph Transformer: Multi-scale attention with Heterophilous Curriculum Augmentation. Knowledge-Based Systems, 309. Scopus. https://doi.org/10.1016/j.knosys.2024.112874
Copyright (c) 2025 Azhariah Rachman

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.