Impact of ChatGPT in Higher Education Learning
Downloads
The existence of technology in the world of education is a very important need. As time goes by, technology is developing rapidly along with the intelligence and creativity of the generation that will be the successor of the nation in the future. Therefore, students must also be able to develop technology in learning such as ChatGPT. The purpose of this study was to determine the impact of ChatGPT in learning in college as a medium that can help lectures. The method used in this research is quantitative method, data obtained through online questionnaire distribution. The results found that there are various impacts such as ChatGPT can make it easier for students to do some of their assignments, however, socially the interaction and communication between students and lecturers will be reduced, because in the world of education what is needed is not only grades, but also the process that makes it clear that ChatGPT can be beneficial because it can help with assignments, but on the other hand, there is a lack of communication between lecturers and students. The limitation of this study is that researchers only conducted research on some students in higher education so that the data obtained is less relevant. Penliti hopes that future researchers can conduct more in-depth research. This research also recommends ChatGPT in college.
Alkhamees, A. A., Alrashed, S. A., Alzunaydi, A. A., Almohimeed, A. S., & Aljohani, M. S. (2020). The psychological impact of COVID-19 pandemic on the general population of Saudi Arabia. Comprehensive Psychiatry, 102, 152192. https://doi.org/10.1016/j.comppsych.2020.152192
Allemani, C., Matsuda, T., Di Carlo, V., Harewood, R., Matz, M., Nikši?, M., Bonaventure, A., Valkov, M., Johnson, C. J., Estève, J., Ogunbiyi, O. J., Azevedo e Silva, G., Chen, W.-Q., Eser, S., Engholm, G., Stiller, C. A., Monnereau, A., Woods, R. R., Visser, O., … Lewis, C. (2018). Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): Analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. The Lancet, 391(10125), 1023–1075. https://doi.org/10.1016/S0140-6736(17)33326-3
Baabdullah, A. M., Alalwan, A. A., Rana, N. P., Kizgin, H., & Patil, P. (2019). Consumer use of mobile banking (M-Banking) in Saudi Arabia: Towards an integrated model. International Journal of Information Management, 44, 38–52. https://doi.org/10.1016/j.ijinfomgt.2018.09.002
Bao, W. (2020). COVID ?19 and online teaching in higher education: A case study of Peking University. Human Behavior and Emerging Technologies, 2(2), 113–115. https://doi.org/10.1002/hbe2.191
Buelow, J. R., Barry, T. A., & Rich, L. E. (2019). Supporting Learning Engagement with Online Students. Online Learning, 22(4). https://doi.org/10.24059/olj.v22i4.1384
Cai, J., Luo, J., Wang, S., & Yang, S. (2018). Feature selection in machine learning: A new perspective. Neurocomputing, 300, 70–79. https://doi.org/10.1016/j.neucom.2017.11.077
Chen, C. L. P., & Liu, Z. (2018). Broad Learning System: An Effective and Efficient Incremental Learning System Without the Need for Deep Architecture. IEEE Transactions on Neural Networks and Learning Systems, 29(1), 10–24. https://doi.org/10.1109/TNNLS.2017.2716952
Chen, J. (2020). Pathogenicity and transmissibility of 2019-nCoV—A quick overview and comparison with other emerging viruses. Microbes and Infection, 22(2), 69–71. https://doi.org/10.1016/j.micinf.2020.01.004
Cheng, G., Yang, C., Yao, X., Guo, L., & Han, J. (2018). When Deep Learning Meets Metric Learning: Remote Sensing Image Scene Classification via Learning Discriminative CNNs. IEEE Transactions on Geoscience and Remote Sensing, 56(5), 2811–2821. https://doi.org/10.1109/TGRS.2017.2783902
Docherty, A. B., Harrison, E. M., Green, C. A., Hardwick, H. E., Pius, R., Norman, L., Holden, K. A., Read, J. M., Dondelinger, F., Carson, G., Merson, L., Lee, J., Plotkin, D., Sigfrid, L., Halpin, S., Jackson, C., Gamble, C., Horby, P. W., Nguyen-Van-Tam, J. S., … Semple, M. G. (2020). Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: Prospective observational cohort study. BMJ, m1985. https://doi.org/10.1136/bmj.m1985
Dowling, M., & Lucey, B. (2023). ChatGPT for (Finance) research: The Bananarama Conjecture. Finance Research Letters, 53, 103662. https://doi.org/10.1016/j.frl.2023.103662
Elkins, K., & Chun, J. (2020). Can GPT-3 Pass a Writer’s Turing Test? Journal of Cultural Analytics, 5(2). https://doi.org/10.22148/001c.17212
Ferentinos, K. P. (2018). Deep learning models for plant disease detection and diagnosis. Computers and Electronics in Agriculture, 145, 311–318. https://doi.org/10.1016/j.compag.2018.01.009
Gao, J., Zheng, P., Jia, Y., Chen, H., Mao, Y., Chen, S., Wang, Y., Fu, H., & Dai, J. (2020). Mental health problems and social media exposure during COVID-19 outbreak. PLOS ONE, 15(4), e0231924. https://doi.org/10.1371/journal.pone.0231924
Gielen, D., Boshell, F., Saygin, D., Bazilian, M. D., Wagner, N., & Gorini, R. (2019). The role of renewable energy in the global energy transformation. Energy Strategy Reviews, 24, 38–50. https://doi.org/10.1016/j.esr.2019.01.006
Grifoni, A., Weiskopf, D., Ramirez, S. I., Mateus, J., Dan, J. M., Moderbacher, C. R., Rawlings, S. A., Sutherland, A., Premkumar, L., Jadi, R. S., Marrama, D., de Silva, A. M., Frazier, A., Carlin, A. F., Greenbaum, J. A., Peters, B., Krammer, F., Smith, D. M., Crotty, S., & Sette, A. (2020). Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell, 181(7), 1489-1501.e15. https://doi.org/10.1016/j.cell.2020.05.015
Hammernik, K., Klatzer, T., Kobler, E., Recht, M. P., Sodickson, D. K., Pock, T., & Knoll, F. (2018). Learning a variational network for reconstruction of accelerated MRI data: Learning a Variational Network for Reconstruction of Accelerated MRI Data. Magnetic Resonance in Medicine, 79(6), 3055–3071. https://doi.org/10.1002/mrm.26977
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz?Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., … Thépaut, J. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803
Hoy, M. B. (2018). Alexa, Siri, Cortana, and More: An Introduction to Voice Assistants. Medical Reference Services Quarterly, 37(1), 81–88. https://doi.org/10.1080/02763869.2018.1404391
Hughes, R. A., Heron, J., Sterne, J. A. C., & Tilling, K. (2019). Accounting for missing data in statistical analyses: Multiple imputation is not always the answer. International Journal of Epidemiology, 48(4), 1294–1304. https://doi.org/10.1093/ije/dyz032
Iskender, A. (2023). Holy or Unholy? Interview with Open AI’s ChatGPT. European Journal of Tourism Research, 34, 3414. https://doi.org/10.54055/ejtr.v34i.3169
Kalle, R., & Sõukand, R. (2021). The name to remember: Flexibility and contextuality of preliterate folk plant categorization from the 1830s, in Pernau, Livonia, historical region on the eastern coast of the Baltic Sea. Journal of Ethnopharmacology, 264, 113254. https://doi.org/10.1016/j.jep.2020.113254
Lau, H., Khosrawipour, V., Kocbach, P., Mikolajczyk, A., Schubert, J., Bania, J., & Khosrawipour, T. (2020). The positive impact of lockdown in Wuhan on containing the COVID-19 outbreak in China. Journal of Travel Medicine, 27(3), taaa037. https://doi.org/10.1093/jtm/taaa037
Lee, S. A. (2020). Coronavirus Anxiety Scale: A brief mental health screener for COVID-19 related anxiety. Death Studies, 44(7), 393–401. https://doi.org/10.1080/07481187.2020.1748481
Mills, J. S., Musto, S., Williams, L., & Tiggemann, M. (2018). “Selfie” harm: Effects on mood and body image in young women. Body Image, 27, 86–92. https://doi.org/10.1016/j.bodyim.2018.08.007
Pishdad-Bozorgi, P., Gao, X., Eastman, C., & Self, A. P. (2018). Planning and developing facility management-enabled building information model (FM-enabled BIM). Automation in Construction, 87, 22–38. https://doi.org/10.1016/j.autcon.2017.12.004
Reynolds, A., Mann, J., Cummings, J., Winter, N., Mete, E., & Te Morenga, L. (2019). Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. The Lancet, 393(10170), 434–445. https://doi.org/10.1016/S0140-6736(18)31809-9
Sanz, M., Marco del Castillo, A., Jepsen, S., Gonzalez?Juanatey, J. R., D’Aiuto, F., Bouchard, P., Chapple, I., Dietrich, T., Gotsman, I., Graziani, F., Herrera, D., Loos, B., Madianos, P., Michel, J., Perel, P., Pieske, B., Shapira, L., Shechter, M., Tonetti, M., … Wimmer, G. (2020). Periodontitis and cardiovascular diseases: Consensus report. Journal of Clinical Periodontology, 47(3), 268–288. https://doi.org/10.1111/jcpe.13189
Sharma, S., Zhang, M., Anshika, Gao, J., Zhang, H., & Kota, S. H. (2020). Effect of restricted emissions during COVID-19 on air quality in India. Science of The Total Environment, 728, 138878. https://doi.org/10.1016/j.scitotenv.2020.138878
Steffel, J., Verhamme, P., Potpara, T. S., Albaladejo, P., Antz, M., Desteghe, L., Haeusler, K. G., Oldgren, J., Reinecke, H., Roldan-Schilling, V., Rowell, N., Sinnaeve, P., Collins, R., Camm, A. J., Heidbüchel, H., ESC Scientific Document Group, Lip, G. Y. H., Weitz, J., Fauchier, L., … Shimizu, W. (2018). The 2018 European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. European Heart Journal, 39(16), 1330–1393. https://doi.org/10.1093/eurheartj/ehy136
Taylor, S., Landry, C. A., Paluszek, M. M., Fergus, T. A., McKay, D., & Asmundson, G. J. G. (2020). COVID stress syndrome: Concept, structure, and correlates. Depression and Anxiety, 37(8), 706–714. https://doi.org/10.1002/da.23071
Wilberforce, T., Olabi, A. G., Sayed, E. T., Elsaid, K., & Abdelkareem, M. A. (2021). Progress in carbon capture technologies. Science of The Total Environment, 761, 143203. https://doi.org/10.1016/j.scitotenv.2020.143203
Wu, X., Sahoo, D., & Hoi, S. C. H. (2020). Recent advances in deep learning for object detection. Neurocomputing, 396, 39–64. https://doi.org/10.1016/j.neucom.2020.01.085
Xiao, Y., Zhang, N., Lou, W., & Hou, Y. T. (2020). A Survey of Distributed Consensus Protocols for Blockchain Networks. IEEE Communications Surveys & Tutorials, 22(2), 1432–1465. https://doi.org/10.1109/COMST.2020.2969706
Yang, P., Xiao, Y., Xiao, M., & Li, S. (2019). 6G Wireless Communications: Vision and Potential Techniques. IEEE Network, 33(4), 70–75. https://doi.org/10.1109/MNET.2019.1800418
Zhong, Y., Lin, J., Wang, L., & Zhang, H. (2018). Discrete comprehensive learning particle swarm optimization algorithm with Metropolis acceptance criterion for traveling salesman problem. Swarm and Evolutionary Computation, 42, 77–88. https://doi.org/10.1016/j.swevo.2018.02.017
Copyright (c) 2023 Jemmy Jemmy, Mia Aina, Wahdah Wahdah, Wang Joshua, Sabri Sabri

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.