Character-based Learning Planning in the 21st Century
Downloads
Character-based learning planning is material or tools that teachers must prepare when they want to carry out the teaching and learning process, here the teacher emphasizes more on the affective aspects and character values that are planned to be realized. The purpose of this study is to explain the importance of character-based learning planning in the 21st century, because currently there are still many lessons that do not prioritize character. Researchers used quantitative methods by using google form as a survey tool addressed to teachers in several schools in Tanah Datar. The result of this research is to know that character-based learning in the era of increasingly sophisticated technology is still too little applied, because learning is still adrift to general knowledge that does not prioritize character. The conclusion of this research is that character-based learning in the 21st century really needs to be applied in order to produce students who have good morals. The limitation of this research is that character-based learning materials are only contained in a few subjects, researchers hope that future researchers can develop it further.
Afshin, A., Sur, P. J., Fay, K. A., Cornaby, L., Ferrara, G., Salama, J. S., Mullany, E. C., Abate, K. H., Abbafati, C., Abebe, Z., Afarideh, M., Aggarwal, A., Agrawal, S., Akinyemiju, T., Alahdab, F., Bacha, U., Bachman, V. F., Badali, H., Badawi, A., … Murray, C. J. L. (2019). Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. The Lancet, 393(10184), 1958–1972. https://doi.org/10.1016/S0140-6736(19)30041-8
Agha, R., Abdall-Razak, A., Crossley, E., Dowlut, N., Iosifidis, C., Mathew, G., Beamishaj, Bashashati, M., Millham, F. H., Orgill, D. P., Noureldin, A., Nixon, I. J., Alsawadi, A., Bradley, P. J., Giordano, S., Laskin, D. M., Basu, S., Johnston, M., Muensterer, O. J., … Ather, M. H. (2019). STROCSS 2019 Guideline: Strengthening the reporting of cohort studies in surgery. International Journal of Surgery, 72, 156–165. https://doi.org/10.1016/j.ijsu.2019.11.002
Albawi, S., Mohammed, T. A., & Al-Zawi, S. (2017). Understanding of a convolutional neural network. 2017 International Conference on Engineering and Technology (ICET), 1–6. https://doi.org/10.1109/ICEngTechnol.2017.8308186
Alzheimer’s Association. (2018). 2018 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia, 14(3), 367–429. https://doi.org/10.1016/j.jalz.2018.02.001
Anderson, R. M., Heesterbeek, H., Klinkenberg, D., & Hollingsworth, T. D. (2020). How will country-based mitigation measures influence the course of the COVID-19 epidemic? The Lancet, 395(10228), 931–934. https://doi.org/10.1016/S0140-6736(20)30567-5
Bannuru, R. R., Osani, M. C., Vaysbrot, E. E., Arden, N. K., Bennell, K., Bierma-Zeinstra, S. M. A., Kraus, V. B., Lohmander, L. S., Abbott, J. H., Bhandari, M., Blanco, F. J., Espinosa, R., Haugen, I. K., Lin, J., Mandl, L. A., Moilanen, E., Nakamura, N., Snyder-Mackler, L., Trojian, T., … McAlindon, T. E. (2019). OARSI guidelines for the non-surgical management of knee, hip, and polyarticular osteoarthritis. Osteoarthritis and Cartilage, 27(11), 1578–1589. https://doi.org/10.1016/j.joca.2019.06.011
Bansal, M. (2020). Cardiovascular disease and COVID-19. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(3), 247–250. https://doi.org/10.1016/j.dsx.2020.03.013
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394–424. https://doi.org/10.3322/caac.21492
Büchi, G., Cugno, M., & Castagnoli, R. (2020). Smart factory performance and Industry 4.0. Technological Forecasting and Social Change, 150, 119790. https://doi.org/10.1016/j.techfore.2019.119790
Chen, Q., Liang, M., Li, Y., Guo, J., Fei, D., Wang, L., He, L., Sheng, C., Cai, Y., Li, X., Wang, J., & Zhang, Z. (2020). Mental health care for medical staff in China during the COVID-19 outbreak. The Lancet Psychiatry, 7(4), e15–e16. https://doi.org/10.1016/S2215-0366(20)30078-X
Cho, N. H., Shaw, J. E., Karuranga, S., Huang, Y., da Rocha Fernandes, J. D., Ohlrogge, A. W., & Malanda, B. (2018). IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Research and Clinical Practice, 138, 271–281. https://doi.org/10.1016/j.diabres.2018.02.023
Choi, Y., Choi, M., Kim, M., Ha, J.-W., Kim, S., & Choo, J. (2018). StarGAN: Unified Generative Adversarial Networks for Multi-domain Image-to-Image Translation. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 8789–8797. https://doi.org/10.1109/CVPR.2018.00916
Chu, D. K. W., Pan, Y., Cheng, S. M. S., Hui, K. P. Y., Krishnan, P., Liu, Y., Ng, D. Y. M., Wan, C. K. C., Yang, P., Wang, Q., Peiris, M., & Poon, L. L. M. (2020). Molecular Diagnosis of a Novel Coronavirus (2019-nCoV) Causing an Outbreak of Pneumonia. Clinical Chemistry, 66(4), 549–555. https://doi.org/10.1093/clinchem/hvaa029
Deng, J., Guo, J., Xue, N., & Zafeiriou, S. (2019). ArcFace: Additive Angular Margin Loss for Deep Face Recognition. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 4685–4694. https://doi.org/10.1109/CVPR.2019.00482
Diercks, C. S., Lin, S., Kornienko, N., Kapustin, E. A., Nichols, E. M., Zhu, C., Zhao, Y., Chang, C. J., & Yaghi, O. M. (2018). Reticular Electronic Tuning of Porphyrin Active Sites in Covalent Organic Frameworks for Electrocatalytic Carbon Dioxide Reduction. Journal of the American Chemical Society, 140(3), 1116–1122. https://doi.org/10.1021/jacs.7b11940
Feng, S., Shen, C., Xia, N., Song, W., Fan, M., & Cowling, B. J. (2020). Rational use of face masks in the COVID-19 pandemic. The Lancet Respiratory Medicine, 8(5), 434–436. https://doi.org/10.1016/S2213-2600(20)30134-X
Griffin, B. J., Purcell, N., Burkman, K., Litz, B. T., Bryan, C. J., Schmitz, M., Villierme, C., Walsh, J., & Maguen, S. (2019). Moral Injury: An Integrative Review. Journal of Traumatic Stress, 32(3), 350–362. https://doi.org/10.1002/jts.22362
Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems, 97, 849–872. https://doi.org/10.1016/j.future.2019.02.028
Hu, M., Graves, C. E., Li, C., Li, Y., Ge, N., Montgomery, E., Davila, N., Jiang, H., Williams, R. S., Yang, J. J., Xia, Q., & Strachan, J. P. (2018). Memristor?Based Analog Computation and Neural Network Classification with a Dot Product Engine. Advanced Materials, 30(9), 1705914. https://doi.org/10.1002/adma.201705914
Ibanez, B., James, S., Agewall, S., Antunes, M. J., Bucciarelli-Ducci, C., Bueno, H., Caforio, A. L. P., Crea, F., Goudevenos, J. A., Halvorsen, S., Hindricks, G., Kastrati, A., Lenzen, M. J., Prescott, E., Roffi, M., Valgimigli, M., Varenhorst, C., Vranckx, P., Widimský, P., … Gale, C. P. (2018). 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. European Heart Journal, 39(2), 119–177. https://doi.org/10.1093/eurheartj/ehx393
Islam, A., & Shin, S. Y. (2019). BUS: A Blockchain-Enabled Data Acquisition Scheme With the Assistance of UAV Swarm in Internet of Things. IEEE Access, 7, 103231–103249. https://doi.org/10.1109/ACCESS.2019.2930774
Kahneman, D., & Tversky, A. (Ed.). (2000). Choices, Values, and Frames: (1 ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511803475
Kemper, W. D., & Rosenau, R. C. (2018). Aggregate Stability and Size Distribution. Dalam A. Klute (Ed.), SSSA Book Series (hlm. 425–442). Soil Science Society of America, American Society of Agronomy. https://doi.org/10.2136/sssabookser5.1.2ed.c17
Knutson, T., Camargo, S. J., Chan, J. C. L., Emanuel, K., Ho, C.-H., Kossin, J., Mohapatra, M., Satoh, M., Sugi, M., Walsh, K., & Wu, L. (2020). Tropical Cyclones and Climate Change Assessment: Part II: Projected Response to Anthropogenic Warming. Bulletin of the American Meteorological Society, 101(3), E303–E322. https://doi.org/10.1175/BAMS-D-18-0194.1
Lau, W. C. M., & Grieshaber, S. (2018). School-based integrated curriculum: An integrated music approach in one Hong Kong kindergarten. British Journal of Music Education, 35(2), 133–152. https://doi.org/10.1017/S0265051717000250
Lemoine, G. J., Hartnell, C. A., & Leroy, H. (2019). Taking Stock of Moral Approaches to Leadership: An Integrative Review of Ethical, Authentic, and Servant Leadership. Academy of Management Annals, 13(1), 148–187. https://doi.org/10.5465/annals.2016.0121
Li, M., Lu, J., Chen, Z., & Amine, K. (2018). 30 Years of Lithium?Ion Batteries. Advanced Materials, 30(33), 1800561. https://doi.org/10.1002/adma.201800561
Martín-Martín, A., Orduna-Malea, E., Thelwall, M., & Delgado López-Cózar, E. (2018). Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics, 12(4), 1160–1177. https://doi.org/10.1016/j.joi.2018.09.002
McDonagh, T. A., Metra, M., Adamo, M., Gardner, R. S., Baumbach, A., Böhm, M., Burri, H., Butler, J., ?elutkien?, J., Chioncel, O., Cleland, J. G. F., Coats, A. J. S., Crespo-Leiro, M. G., Farmakis, D., Gilard, M., Heymans, S., Hoes, A. W., Jaarsma, T., Jankowska, E. A., … Skibelund, A. K. (2021). 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. European Heart Journal, 42(36), 3599–3726. https://doi.org/10.1093/eurheartj/ehab368
Nicola, M., Alsafi, Z., Sohrabi, C., Kerwan, A., Al-Jabir, A., Iosifidis, C., Agha, M., & Agha, R. (2020). The socio-economic implications of the coronavirus pandemic (COVID-19): A review. International Journal of Surgery, 78, 185–193. https://doi.org/10.1016/j.ijsu.2020.04.018
Phua, J., Weng, L., Ling, L., Egi, M., Lim, C.-M., Divatia, J. V., Shrestha, B. R., Arabi, Y. M., Ng, J., Gomersall, C. D., Nishimura, M., Koh, Y., & Du, B. (2020). Intensive care management of coronavirus disease 2019 (COVID-19): Challenges and recommendations. The Lancet Respiratory Medicine, 8(5), 506–517. https://doi.org/10.1016/S2213-2600(20)30161-2
Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378, 686–707. https://doi.org/10.1016/j.jcp.2018.10.045
Rajkumar, R. P. (2020). COVID-19 and mental health: A review of the existing literature. Asian Journal of Psychiatry, 52, 102066. https://doi.org/10.1016/j.ajp.2020.102066
Rao, S. S. (2019). Engineering Optimization Theory and Practice (1 ed.). Wiley. https://doi.org/10.1002/9781119454816
Siegel, R. L., Miller, K. D., & Jemal, A. (2020). Cancer statistics, 2020. CA: A Cancer Journal for Clinicians, 70(1), 7–30. https://doi.org/10.3322/caac.21590
Sun, C., Mezzadra, R., & Schumacher, T. N. (2018). Regulation and Function of the PD-L1 Checkpoint. Immunity, 48(3), 434–452. https://doi.org/10.1016/j.immuni.2018.03.014
Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P. H. S., & Hospedales, T. M. (2018). Learning to Compare: Relation Network for Few-Shot Learning. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 1199–1208. https://doi.org/10.1109/CVPR.2018.00131
Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J., & Mering, C. von. (2019). STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), D607–D613. https://doi.org/10.1093/nar/gky1131
Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., Pulcini, C., Kahlmeter, G., Kluytmans, J., Carmeli, Y., Ouellette, M., Outterson, K., Patel, J., Cavaleri, M., Cox, E. M., Houchens, C. R., Grayson, M. L., Hansen, P., Singh, N., … Zorzet, A. (2018). Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet Infectious Diseases, 18(3), 318–327. https://doi.org/10.1016/S1473-3099(17)30753-3
Thema, M., Bauer, F., & Sterner, M. (2019). Power-to-Gas: Electrolysis and methanation status review. Renewable and Sustainable Energy Reviews, 112, 775–787. https://doi.org/10.1016/j.rser.2019.06.030
Théry, C., Witwer, K. W., Aikawa, E., Alcaraz, M. J., Anderson, J. D., Andriantsitohaina, R., Antoniou, A., Arab, T., Archer, F., Atkin-Smith, G. K., Ayre, D. C., Bach, J.-M., Bachurski, D., Baharvand, H., Balaj, L., Baldacchino, S., Bauer, N. N., Baxter, A. A., Bebawy, M., … Zuba-Surma, E. K. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 7(1), 1535750. https://doi.org/10.1080/20013078.2018.1535750
Thompson, A. J., Banwell, B. L., Barkhof, F., Carroll, W. M., Coetzee, T., Comi, G., Correale, J., Fazekas, F., Filippi, M., Freedman, M. S., Fujihara, K., Galetta, S. L., Hartung, H. P., Kappos, L., Lublin, F. D., Marrie, R. A., Miller, A. E., Miller, D. H., Montalban, X., … Cohen, J. A. (2018). Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. The Lancet Neurology, 17(2), 162–173. https://doi.org/10.1016/S1474-4422(17)30470-2
Tortorici, M. A., & Veesler, D. (2019). Structural insights into coronavirus entry. Dalam Advances in Virus Research (Vol. 105, hlm. 93–116). Elsevier. https://doi.org/10.1016/bs.aivir.2019.08.002
Wan, Y., Shang, J., Graham, R., Baric, R. S., & Li, F. (2020). Receptor Recognition by the Novel Coronavirus from Wuhan: An Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. Journal of Virology, 94(7), e00127-20. https://doi.org/10.1128/JVI.00127-20
Wang, X., Girshick, R., Gupta, A., & He, K. (2018). Non-local Neural Networks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 7794–7803. https://doi.org/10.1109/CVPR.2018.00813
Wang, Y., Xia, Y., Shen, H., & Zhou, P. (2018). SMC Design for Robust Stabilization of Nonlinear Markovian Jump Singular Systems. IEEE Transactions on Automatic Control, 63(1), 219–224. https://doi.org/10.1109/TAC.2017.2720970
Wang, Y.-X., Girshick, R., Hebert, M., & Hariharan, B. (2018). Low-Shot Learning from Imaginary Data. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 7278–7286. https://doi.org/10.1109/CVPR.2018.00760
Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, J. R., Sajed, T., Johnson, D., Li, C., Sayeeda, Z., Assempour, N., Iynkkaran, I., Liu, Y., Maciejewski, A., Gale, N., Wilson, A., Chin, L., Cummings, R., Le, D., … Wilson, M. (2018). DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research, 46(D1), D1074–D1082. https://doi.org/10.1093/nar/gkx1037
Yao, X., Ye, F., Zhang, M., Cui, C., Huang, B., Niu, P., Liu, X., Zhao, L., Dong, E., Song, C., Zhan, S., Lu, R., Li, H., Tan, W., & Liu, D. (2020). In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clinical Infectious Diseases, 71(15), 732–739. https://doi.org/10.1093/cid/ciaa237
Yuan, J., Zhang, Y., Zhou, L., Zhang, G., Yip, H.-L., Lau, T.-K., Lu, X., Zhu, C., Peng, H., Johnson, P. A., Leclerc, M., Cao, Y., Ulanski, J., Li, Y., & Zou, Y. (2019). Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule, 3(4), 1140–1151. https://doi.org/10.1016/j.joule.2019.01.004
Copyright (c) 2024 Meisuri Meisuri, Srikandi Dwi Poncowati, Najwa Syarofa, Suyitno Suyitno, Eka Uliyanti Putri br Bangun

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.